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Abstract

Let G-(V,E) be an undirected graph whose edges may fail, and let GK denote G with a
set KQV specified. Edge failures are assumed to be statistically independent and to have
known probabilities. The K-terminal reliability of GK, denoted R (GK), is the probability that
all vertices in K are connected by working edges. New reduction techniques are presented
which decrease the complexity of computing R (GK), a task which is NP-hard in general.
Reliability-computing algorithms which use these reductions are developed and their complexi-
ties are analyzed.

If G is series-parallel, GK will either be "s-p reducible" or "s-p complex" depending on
the configuration of the vertices in K. If GK is s-p reducible, A (GK) can be computed in poly-
nomial time by using standard series-parallel reduction techniques which reduce GY to a single
edge whose reliability is trivially evaluated. But if GK is s-p complex, R (GK) cannot be
evaluated in this way. Until now, only exponential-time algorithms as used on general graphs
were known for computing R (GK) in the s-p complex case. However, by developing a new set
of reliability-preserving reductions, we prove that R (Gx) can be computed in polynomial time
in the s-p complex case, too.

These new "polygon-to-chain" reductions are of general applicability and always decrease
the size of a graph. If a series-parallel graph does not admit a standard reduction, then we
prove that it must admit a polygon-to-chain reduction. Combining all types of reductions, an
O(1E 1) algorithm is presented for computing the reliability of any series-parallel graph irrespec-
tive of the vertices in K. The algorithm is extended to make all possible reductions in a graph
which is not series-parallel, and results are extended to handle graphs with unreliable vertices.

Suppose GK-- ,LU G such that InE-o, n fV-(u, vj, IE I>2 and IEl>2. The vertices
{u,v are called a separating pair. We prove that any subgraph between a separating pair such
as GK may be replaced by a chain of one, two or three edges between u and v such that the
reliability of GK is preserved. This is a generalization of earlier results which showed that for
certain configurations of K, a subgraph such as G could be replaced by a single edge. We
show how this reduction can be carried out by computing no more than four K-terminal relia-
bility problems defined on dr. Results are also extended to graphs with unreliable vertices,
although in this case the reduction may require the computation of up to six reliability prob-
lems defined on GKt.

A factoring algorithm for computing network reliability recursively applies the formula
R(GK)-p 1R(GK.'e)+qR(GK-e,) where GK'e1 is GK with edge e, contracted, GK-e, is GK
with ej deleted and pl-l-qj is the reliability of edge ej. Various reliability-preserving reduc-
tions may be performed after each factoring operation in order to reduce computational com-
plexity. We show that for 2<IK145 or lVl-2lKI< IVl, the complexity of a properly imple-
mented factoring algorithm using standard series, parallel and degree-2 reductions along with
the polygon-to-chain reductions will be bounded above by a combinatorial invariant of G called
the minimum domination. The factoring algorithm with polygon-to-chain reductions will always
perform as well as or better than the algorithm using only standard reductions, and for some
networks, it will outperform the simpler algorithm by an exponential factor.
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Chapter 1

Introduction

Analysis of network reliability is important in computer, communication, power and vari-

ous other networks. Components of a particular network may be subject to random failure and

the network may or may not continue to function after some of its components have failed.

We wish, as efficiently as possible, to determine the probability that the network is functional.

The purpose of this thesis is to develop new reduction techniques for computing network relia-

bility and to show how computational complexity can be decreased by using these techniques.

The network model which is used in this work may be thought of as a communication

network with duplex communication links connecting various transceiving stations. Communi-

cation can pass in both directions along a link if the link is working; no communication in

either direction is possible if the link has failed. The network is considered functional if a

specified set of the transceiving stations is able to communicate.

Although very simple, this model produces difficult theoretical and computational prob-

lems. This simplicity may result in the model not being directly applicable to many real-world

situations. However, when this is the case, techniques developed here may provide valuable

tools for more complex analyses. For example, we will assume that component-failure proba-

bilities are known with certainty. If tzLs is not true, it may be possible to estimate a probability

distribution for the reliability of the network by combining techniques of this thesis with

numerical integration and/or simulation.

The network model is essentially a probabilistic graph, so, in the next section, a few fun-

damental graph theoretic notions will be defined. These notions will simplify the formal

.I -- . .. . .... . ..



2

definition of the model in the subsequent section.

1.1 Graph Theory Fundamentals

A graph G-(V,E) comprises two finite sets: V is the set of vertices and E is the set of

edges. Each edge eeE corresponds to an unordered pair of vertices, that is, e-(u, v) where

u, vEV. The vertices u and v are called the endpoints of edge e. A distinction is sometimes

made between a graph and a multigraph. In a graph, no two edges may have both endpoints in

common, but this is permissible in a multigraph. For simplicity, we shall allow such parallel

edges and still call G a graph. An edge of the form e-(u,u), called a self-loop, is also allowed.

A graph with self-loops is often called a pseudo-graph but, again, we use the term "graph" since

no confusion results.

If there exists an edge e-(u, v) in G, then u and v are said to be adjacent Edge e is

incident to (with, on) both u and v. The degree of a vertex v, denoted deg (v), is the number

of edges incident on Y. Two vertices are connected (or communicate) if there exists a

sequence of vertices and edges of the form u, (uV), 1, (vI. 2) ... , (v,1, v), v1, (v1, v), V.

Such a sequence is a path and the path is simple if no vertices are repeated. If the first and last

vertices are repeated, the path is a cycle If only the first and last vertices are repeated, the

cycle is simple. A set of vertices KQV is connected if there exists a path between all pairs of

vertices in K. G is said to be connected if V is connected. A tree is a connected graph with no

cycles.

A graph G'-(V',E') is a subgraph of G-(V,E) if V'QV and E'QE. G-v denotes the

subgraph of G obtained by deleting vertex V from G, i.e., G-v-(V-v,E-Eo) where

Eo-m(eEE : V is an endpoint of e). If G is connected, but G- V is disconnected, then v is a

cntvertex of G. A nonseparable or biconnected graph contains no cutvertices. A block of a

graph is a maximal nonseparable subgraph.

Deletion of an edge from from a graph can also disconnect that graph. G-e denotes the

subgraph obtained from G by deleting edge e from G, i.e., G-e-(V,E-e). If G-e is discon-

AW • . •
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nected, then e is a bridge in G.

The reader should consult a standard text such as Harary [19691 for a more basic and

comprehensive discussion of graph theory and for any terms not defined here.

1.2 Formal Model and Problem Definition

Let G-(V,E) be a graph whose edges may fail, independently of each other, with known

probabilities. Vertices are assumed to be perfectly reliable. The edge-failure probability for

edge ej is given by q1 and the edge reliability is given by p,-l-qj. Assume for now that these

probabilities are all given for a particular instant of time, 7. Two different interpretations will

be provided shortly.

For reliability purposes, a set KQV must be specified for G. Such vertices will be

referred to as the K-vertlces of G and GK used to denote the graph G with K specified. Both

the terms "graph" and "network" will be used to refer to Gy, with or without the associated edge

reliabilities since no confusion results. Strictly speaking, however, a network is a graph whose

components have additional properties or constraints imposed upon them. Now, the K-

terminal reliability of GK, denoted R (Gy), is simply the probability, at time 7, that all K-

vertices in GK are connected by working edges, unless IKI-I in which case R(GK)-I. (We

shall use the shorter phrase "GK is connected" to mean that the K-vertices in GK are con-

nected.) For historical reasons, most authors (see Hwang et al. 19811 for a good review and

bibliography) have considered the computation of R (GK) only when IK -2 or K-V. However,

the case where 241KI41VI has been handled, in varying degrees of generality, by some

authors (Ball [1979, 19801, Buzacott 119801, Johnson[19821, Rosenthal [19771, Satyanarayana

[19821, Wood (19801), and most of the results of this work will be valid for any set K.

Our definition of network reliability can be generalized to handle the case where the ver-

tices in a graph are unreliable, but, unfortunately, this greatly complicates analysis. Neverthe-

less, many results of this thesis can be extended to handle unreliable vertices and, where possi-

ble, extended results will be stated. When vertex failures are considered, it will be assumed

.. .," ' . . . , --
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that all K-vertices are completely reliable since any K-vertex failing implies that the whole net-

work has failed.

As previously mentioned, network reliability can have two major interpretations depend-

ing on the meaning of the edge-failure probabilities. In the first scenario, consider a network in

which the edges fail over time and are not repaired. At any particular instant of time ., q, can

be interpreted as the probability that edge ej has failed; perhaps a set of time-to-failure proba.

bility distributions [Fi(t), i-I, ... , IEI is specified and qj-F(&). Then R(GK) is the proba-

bility that GK is still functional at time T.

Another interpretation can be made for a system in which the components fail, are

repaired, fail, are repaired, etc. If these sequences of failure and repair times form independent

renewal processes, then the asymptotic failure probabilities are given by

q,-E[D11/(E[D1+E[U 1]) where E[ D i] is the expected length of time edge e is down (failed)

and E[Ud] is the expected length of time the edge is up (functioning). R(GK) is then the

steady-state probability that the network is functioning (Barlow and Proschan 119751).

We will limit our discussion in this thesis to graphs which are initially connected and non-

separable. Suppose we wish to determine R (GK) but G is disconnected. If the K-vertices are

disconnected then R(Gy) MO and the situation is distinctly uninteresting. If G is initially

,sconnected but the K-vertices are connected, then there must exist a connected component or

subgraph of G, say G', which contains all the K-vertices. Thus R (GK)-R (G'K) and we may

ignore the rest of G. A graph can be tested for connectivity very efficiently but the point is

rather moot since in any real-world problem, only a very ill-defined network would be discon-

nected when working perfectly.

Now, suppose G-(V,E) is connected but separable and let vEV be any cutvertex of G.

G can be partitioned into two connected subgraphs G(')-(V1,E1) and G(2)-(V 2,E2 ) such that

VtUV 2-V, VtnV 2-v, EUE 2 -E and E1tAE2-0. Also, E 1 00 and E2 00. Let K-Kr)V and

K2 -Kf V2. If K1-v-0 or K 2-v-0, then the corresponding component is irrelevant and may

be disregarded. Otherwise, it is well known that R(GK)-R(G( K+,)R(G(2)K 2+,). Thus the
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reliability of a separable graph can be computed by evaluating the reliabilities of its blocks

separately. The blocks of a graph can be identified easily using biconnected decomposition via

depth-first-search (Tarjan [1972)), an-t, for this reason, we henceforth consider only nonsepar-

able graphs.

1.3 Problem Complexity

The K-terminal network reliability problem belongs to the class of NP-hard problems (Ball

119801, Ball and Provan [1981], Rosenthal [19741, Valiant [19771). This class contains all those

problems which are at least as hard as the well-known NP-complete problems such as the

satisfiability problem and the traveling salesman problem. In addition, Valiant [19771 and Ball

and Provan [19811 have shown that respectively, the two-terminal and all-terminal problems

belong to the class of #-P complete (number-P complete) problems which implies that they are

of similar difficulty to a variety of enumeration problems (counting, not listing) such as count-

ing the number of satisfying assignments of variables in a boolean, conjunctive normal form

expression, counting the number of source-to-terminal paths in a network, etc.

In order to get a feel for the inherent difficulty of the network reliability problem, con-

sider the standard test for membership in 'r": Given a tentative solution to the problem

expressed in decision form, can we check in polynomial time whether or not the solution is

valid? For example, the statement for the traveling salesman problem defined on a graph G

with given edge lengths is, "Is there a tour of length L or less in the given network?" If a ten-

tative solution, i.e., a tour, is proffered, we can easily check in polynomial time to see if the

"tour" is in fact a valid tour and whether or not its length is L or less. Suppose we state the

reliability problem as a standard decision problem: "Is R(GK)< a for a given set of edge relia-

bilities?" No structure (that we know of) like a traveling salesman tour can be submitted as a

tentative solution. The only way to check a reliability solution is to go back and compute the

reliability of the network once again from the start. Thus it seems that the K-terminal reliabil-

ity problem is at least one step more difficult than many standard combinatorial optimization

problems. Additional weight is given to our argument by the fact that the reliability
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approximation problem is NP-hard (Rosenthal [1974]) and by the fact that, unlike many other

combinatorial problems, no good heuristic procedures exist for solving the reliability problem.

We are thus dealing with an inherently intractable problem P¢;d any general algorithm that

we can devise will be of exponential complexity unless someone produces an earth-shattering

breakthrough. What ran be done? Well, we can attempt to make the algorithms that we do

have as efficient as possible, find and exploit topological properties of networks so as to reduce

computational complexity and search for special classes of networks which admit efficient,

polynomial-time solutions. In this work, contributions are made along all of these lines.

1.4 The Factoring Theorem of Network Reliability

Let e-(u, i) be some edge of a graph GK. and let F denote the event that e is working

and F, denote the complementary event. Since R (GK) is just a probability, the rules of condi-

tional probability can be applied to obtain

R(Gx) - pR(GxIFj) + qjR(GKIF,) (1.1)

GK IF, actually defines a new graph in which u and v are known to be connected. This new

induced ;raph (we do not mean induced subgraph in the standard graph theoretic sense)

denoted GK' ei, is obtained by deleting e, and merging u and v into a single supervertex

w-uU v. If either u or v is a K-vertex then w is a K'-vertex. More formally, GK.°ei is

defined by

G*e - (V-u-v+w,E-e), w-uU v,

1K if u,v 
(1.2)

K K-u-v+w if uEK or VEK

Similarly, GOP,1 defines a new graph denoted GK-ej where G-ej-(V,E-e). Figure 1.1 illus-

trates how these two graphs are induced. We can now write Equation 1.1 as

R (GK) - p1R (GK'e) + q1R (GK-ei) (1.3)

That this relationship holds was first shown in Moore and Shannon [19561 and is known as the

factoring theorem for network reliability.

This factoring theorem is useful in two ways. First, in Chapters 2 and 3, we will use it as



7

aa

FG' G,,

Induced Graphs Obtained by Factoring on e a

FIGURE 1.1



8

a method to derive and prove the validity of some new reliability-preserving reductions

Roughly speaking, a reliability-preserving reduction is a technique whereby some subgraph of

GK is replaced by a smaller subgraph to obtain G'K' such that R(GK)-flR(G'K.) where f) is a

constant obtained from the original subgraph. These reductions are used to compute reliability

directly where possible or used in conjunction with other more general methods to reduce com-

putational complexity. The common series and parallel reductions discussed in Chapter 2 are

examples of reliability-preserving reductions where (-0 1.

The factoring theorem is also the basis for a whole class of algorithms for computing net-

work reliability. Moskowitz 11958) was the first to employ the factoring theorem directly as a

means of calculating network reliability. Equation 1.3 can be recursively applied to the induced

graphs and reliability-preserving reductions made where applicable within the recursion. Even-

tually the induced graphs are reduced to simple structures, like single edges, for which reliabil-

ity is trivially computed, or some K-vertices become disconnected, in which case the reliability

of the induced graph is zero. In this way, the reliability of any network may be computed, at

least in theory. This method of computing network reliability is known as factoring and is a

special case of pivotal decomposition of a binary coherent system (Barlow and Proschan

(19751). Other methods of network reliability evaluation do exist, including inclusion-exclusion

approaches (Satyanarayana and Prabhakar [1978), Satyanarayana 11982)), composition (Buzacott

119801), simulation (Kumamoto et al. (19771, Kumamoto et al. [19801) and boolean-algebra

methods (Fratta and Montanari (19731). (See Hwang er al. [19811 for a fairly complete and

well-organized listing of works in the different areas.) However, of these general methods, only

factoring-based algorithms and their complexity will be discussed in this thesis.

1.5 Thesis Outline and Summary of Results

The remainder of this thesis is outlined in this section. In Chapter 2, we first prove the

validity of a new set of reliability-preserving reductions useful for the K-terminal reliability

problem. These reductions, called polygon-to-chain reductions, are topologically similar to the

well-known parallel reduction but, instead of replacing two edges in parallel with a single edge,

k _
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we replace two chains in parallel (a polygon) with a single chain. A chain is basically a simple

path all of whose vertices except the first and last have degree 2.

These reductions, along with several standard reductions, are then used to prove that if G

has an underlying series-parallel structure, R (G) can be computed in polynomial time for any

K. The class of graphs which can be analyzed by this method not only includes the well-studied

and easily handled two-terminal series-parallel graphs, but also includes a whole class of graphs

previously thought to require exponential time to solve. An O(E) procedure, Algorithm 2.1,

is detailed which either computes R (GK) if the graph is in the designated class or informs us

that the input graph is not a member of the class.

We subsequently modify Algorithm 2.1 in order to apply it to any graph so as to make all

possible standard and polygon-to-chain reductions. The modified algorithm can then be used as

a subroutine in a factoring algorithm for computing the reliability of any general graph. We

conclude Chapter 2 by extending earlier results to the case where vertices not in K are unreli-

able.

Results of Chapter 3 are direct generalizations of the results of Chapter 2. If we can parti-

tion a graph GK into two parts such that GK-GtUGk, EE-0, V fV-{u,v), I1>2 and

lEi;02, then we show that g or G can be replaced by a chain in a reliability-preserving

reduction. The pair Iu, v) is called a separating pair and the reduction described above can be

applied in a systematic fashion using triconnected component decomposition which partitions a

graph along its separating pairs. Some background information is given on this decomposition

and its use in the K-terminal reliability problem. If the vertices of the separating pair are

unreliable, our reductions can be validly extended. Details of this extension are presented but

are not proven.

Chapter 4 answers the question "What is the minimal complexity of a factoring algorithm

which uses standard reductions plus the new polygon-to-chain reductions in its reduction sub-

routine?" We first specify the general outline of a factoring algorithm and then review some of

the earlier work on the complexity of such algorithms. Satyanarayana and Chang [19811 have

AwI
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used "domination theory" to analyze the complexity of the K-terminal reliability problem using

the factoring algorithm along with series and parallel reductions. They relate a graph invariant

called domination and denoted D(GK) to the backtrack search structure produced by the factor-

ing algorithm. They show that the factoring algorithm will be optimal if the number of leaves

in its backtrack structure is equal to D(GK), and show that this will be true if and only if a par-

ticular edge-selection strategy is used for factoring. Chang [19811 uses minimum domination,

M(G) - K.KiP.2 D(GK), to find an optimal factoring algorithm for the all-terminal problem

which uses degree-2 and parallel reductions.

We use the same methods to find an optimal edge-selection strategy when JK1 is within

certain limits. Using a restricted edge-selection strategy, we show that for 2 1K I<5 or for

IVI-24IKI41VI, it is always possible to compute R(GK) in time which is proportional to

M(G). This complexity result is significant since domination may be exponentially larger than

minimum domination. It also means that we can compute the most common measure of relia-

bility, two-terminal reliability, in approximately the same amount of time for any two terminals

in a given graph. Finall] --, remove the restriction on the edge-selection strategy and show

that M(G) provides a tight upper bound on algorithmic complexity.
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Chapter 2

Polygon-to-Chain Reductions and Series-Parallel Graphs

2.1 Introduction

While the network reliability problem is NP-hard for general networks, polynomial-time

algorithms do exist for certain network configurations such as 1ladders" and "wheels" and for

some series-parallel structures such as "two-terminal" series-parallel networks. In this chapter,

we show that a class of series-parallel networks, for which only exponentially complex algo-

rithms were previously known (Hiinsler et al. [19741, Lin et al. [19761, Hwang et al. [19811),

can be analyzed in polynomial time. In doing this, we introduce a new reliability-preserving

reduction of general applicability and produce a linear-time algorithm for computing the reliabil-

ity of any graph with an underlying series-parallel structure.

In network reliability analysis, three reliability-preserving reductions are well known: the

series reduction, the degree-2 reduction (an extension of the series reduction for problems with

IK[>2) and the parallel reduction. From the reliability viewpoint, we classify biconnected

series-parallel graphs into two broad types, those which are reducible to a single edge using

series, parallel and degree-2 reductions, and those which are not. The former type is referred to

as s-p reducible and the latter, s-p complex. For example, the series-parallel graph of Figure

2.1a is s-p reducible if K-Jv', vY), but is s-p complex for K-{v1, v6j. Thus, the reducibility

of a series-parallel graph, for the purpose of reliability evaluation, depends on the nature of the

hj vertices included in K. A more detailed exposition of this concept appears in section 2.2.

The K-terminal reliability of an s-p reducible graph can be computed in polynomial time.
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Several methods exist for the solution of the terminal-pair problem for such a graph, i.e., for a

two-terminal series-parallel network (Misra [1970], Sharma [1976]), and for IKI>2, direct

extensions of the methods can be used. However, researchers have considered computation of

the reliability of s-p complex graphs to be as hard as the general problem. The purpose of this

chapter is to present an efficient, linear-time algorithm for this problem by introducing a new

set of reliability-preserving graph reductions called polygon-to-chain reductions.

In a graph, a chain is an alternating sequence of vertices and edges, starting and ending

with vertices such that all internal vertices have degree 2. Two chains with the same end ver-

tices constitute a polygon. In section 2.3, we show that a polygon can be replaced by a chain

and that this transformation will yield a reliability-preserving reduction. We discuss the rela-

tionship between s-p complex graphs and polygons in section 2.4. Using the polygon-to-chain

reductions in conjunction with the three simple reductions mentioned earlier, a polynomial-time

procedure is then outlined which will compute the reliability of an s-p complex graph. This

procedure is very simple but not necessarily linear, so in section 2.5 we develop, in detail, an

efficient algorithm which is shown to operate in O( El) time. This algorithm will compute the

K-terminal reliability of any graph having an underlying series-parallel structure. Finally, in

section 2.6, we discuss how the algorithm can be extended to reduce a nonseries-parallel graph

as far as possible so that it could be used as a subroutine in a reliability analysis algorithm for

general networks.

2.2 Preliminaries

Simple reductions:

In order to reduce the size of graph Gx and therefore reduce the complexity of computing

R (GK), three well-known simple reductions are often applied. A parallel reduction replaces a

pair of edges e.-(u, 0') and eb-(u, v) with a single edge e,-(u, v) such that p,-I-q.qb.

Suppose e.-(u,v) and eb-(v,w) such that udw, deg(v)-2 and vi K. A series reduc-

tion replaces e. and eb with a single edge e,-(u, w) such that Pc'P.
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If G'K is the graph obtained from GK after a series or parallel reduction, then

R(GK)-R(G'K). In other words, the K-terminal reliability of GK remains invariant under

series or parallel reductions.

Suppose e-(u,v) and eb-(V,W), such that uew, deg(v)-2 and (u,v,w}CK. A

degree-2 reduction replaces e. and eb with a single edge e,-(u, w) such that p,-pap (l-q.qb)

and R(GK)-(I-qaqb)R(G'K-,), where G' is the graph obtained from G by replacing ea and

eb with e.

The simple reductions described above are examples of reliability-preserving reductions

where a subgraph of GK is replaced by a simpler subgraph to obtain G'K, where

R (G)- R (G'K) and the multiplicative factor fl is derived exclusively from the original sub-

graph. Of course, in the series and parallel reductions I -I and K'-K.

Series-parallel graphs:

The following definition should not be confused with the common definition of a "two-

terminal" series-parallel network in which two vertices must remain fixed. No special vertices

are distinguished here. In a graph, edges with the same end vertices are parallel edges Two

nonparallel edges are adjacent if they are incident on a common vertex. Two adjacent edges

are series edges if their common vertex is of degree 2. Replacing a pair of series (parallel)

edges by a single edge is called a series (parallel) replacement. A series-parallel graph is a

graph that can be reduced to a tree by successive series and parallel replacements. Clearly, if a

series-parallel graph is nonseparable, then the resulting tree, after making all series and parallel

replacements, contains exactly one edge.

We wish to clarify the subtle difference between the term "replacement" used here and the

term "reduction" used with respect to simple reductions. By reduction, we mean a reliability-

preserving reduction; hence, the term is applicable only to GK. On the other hand, a replace-

ment is defined on G, irrespective of K. For example, in graph G as shown in Figure 2.1a,

series replacements could be made but no reductions are possible in the corresponding GK with

K -"Iv 1, v6} (Figure 2.1b). Motivated by this distinction, we define an s-p reducible graph and
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an s-p complex graph next.

s-p reducible graphs and s-p complex graphs:

Clearly, if G has no series or parallel edges, then for any K, GK admits no simple reduc-

tions. If G is a series-parallel graph, then a simple reduction might or might not exist in GK

depending upon the vertices of G that are chosen to be in K. For example, consider the

series-parallel graph G of Figure 2.Ia. The graph GK, for K-f v2,, v4} as in Figure 2.lc, can

be reduced to a single edge by successive simple reductions. On the other hand, for

K-.f v1, vj, GK has no reductions (Figure 2.1b). A graph GK is termed s-p reducible if it can

be reduced to a single edge by successive, simple reductions.

It is possible for a (nonseparable) series-parallel graph to admit one or more simple reduc-

tions for a specified K and still not be s-p reducible. As an illustration, consider GK of Figure

2.1d. Two series reductions may be applied to this graph to obtain the graph of Figure 2.1e,

but no further simple reductions are possible. A graph GK is s-p complex if G is a series-

parallel graph, but GK is not s-p reducible. An s-p complex graph may or may not admit some

simple reductions.

Chains and polyons:

In a graph, a chain X is an alternating sequence of distinct vertices and edges,

v1, (v 1 , V2), v2, ( v 2, v), v3, ''', VA.-1, ( Vk-, Vk), Vk, such that the internal vertices,

v2, v3 .... VkI, are all of degree 2 and the end vertices v, and Vk are of degree greater than 2.

A chain need not contain any internal vertices, but it must contain at least one edge and the

two end vertices. The length of a chain is simply the number of edges it contains. A subchaln

is a connected subset of a chain beginning and ending with a vertex and containing at least one

edge. Both the end vertices of a subchain may be of degree 2. The notation X will also be used

for a subchain with the usage differentiated by context.

Suppose XI and X2 are two chains of lengths 11 and 12, respectively. If the two chains have

common end vertices u and V, then XIUX2 is a polygon of length 11+12. In other words, a

polygon is a cycle with the property that exactly two vertices of the cycle are of degree greater

All!

.-- .. . .. i i
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than 2. While this definition allows two parallel edges to constitute a polygon, we will initially

require a polygon to be of length at least 3.

2.3 Polygon-to-Chaln Reductions

In this section, a new set of reliability-preserving reductions will be introduced which

replaces a polygon with a chain. Consider a graph GK which does not admit any simple reduc-

tions but does contain some polygon A. In general, no such A need exist, but, if it does exist,

then the number of possible configurations is limited.

Property 2.1: Let GK be a graph which admits no simple reductions. If GK contains a polygon,

it is one of the seven types given in the first column of Table 2. 1.

Proof: This follows from the facts that (i) every degree-2 vertex of GK is a K-vertex, (ii) there

can be no more than two K-vertices in a chain, and (iii) the length of any chain in GK is at

most 3. 0

We will use the factoring theorem described in Chapter I to prove the validity of our new

reduction. For our purposes here, factoring will only be applied to the edges of a single

polygon or a chain. To illustrate, consider the graph GK of Figure 2.2a, which contains a type I

polygon with 3 edges, e., eb and e. Let F denote a compound event or "state" such as F.Fb F,

and let F be the set containing all 23 possible states. Also, let zi-I if the event F occurs in F

and let z,-O if F, occurs. In other words, zi is an indicator variable which is 1 if e works and is

0 if ef has failed. Equation 1.1 can be extended now to

R(GK)- ,p.q. ZePb Zbqb 2 Pc c 2 ZcR(GK1F) (2.1)

Figure 2.2b shows the eight graphs induced by the terms of the above equation. Note that four

of the induced graphs are identical and that two others are failed, i.e., have zero reliability,

since wEK is disconnected in these graphs. With the above introduction, we are now ready to

show that a reliability-preserving polygon-to-chain reduction exists for each of the seven

polygons given in Table 2.1.

ALA...
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TABLE 2.1

Polygon-to-Cha~n Reductions

Note: Darkened vertices represent K-verticas

Polygon Type Chain Type Reduction Forulas New Edge Reliabilities

q q qc

(1) P, ____________PC ___ Pr -

eb a 0 P.
6

p q I
r a Bpqbq e" +

(2) ~ B-pb p aPbP (a +6)(8 +6)

a b a b cpd +qA cqd aq&P cpd

(3) 6.PbpPd Pa *Ob Pc Pd)

0c d6 Paq 0~

(4) Y PapbPcPd(l Pa Pbc Pd)

a b IKI , 2 qabcd

Cr, a at pa pq

'dSee note 'b - + _Id)r

(5)~~ ________ YPaPbPcpd (1 +a +

__________ _______ _b Pc 6 s

a*b 0 p P cp(Pdq, +4dP,) pt.

6g a d )(6+)
*.a . f.

(6) - a~b~jdpe *- + b~

Bpq p P P(q dPPf 
4
pdq Pf +PdP~qf) Fore: 2

a + P5 Pb qcpf (Pdq, +qdp*) new chain is

~ q ppdp(qepf +Rlqf) . r

(7) Y 1 "PPpppp a Pb P b a

pd Pe Pf1 Compare Theorem 3.1!
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Theorem 1: Suppose GK contains a type j polygon. Let G'K, denote the graph obtained from

GK by replacing the polygon A with the chain Xj having appropriately defined edge probabili-

ties, and let flj be the corresponding multiplication factor, all as shown in Table 2. 1. Then,

R(GK) - fl j R(G',).

We prove the exactness of reduction 7 only, since reductions 1-6 may be shown in a simi-

lar fashion. Figure 2.3 illustrates the use of the theorem on a general graph containing a type 7

polygon and Figures 2.4 and 2.5 are used to illustrate the proof of the theorem. To improve

readability in the proof and table, we have dropped the subscript "7" on a, P, 8, 'Y, and fl even

though, strictly speaking, these parameters are all functions of the reduction type.

Proof of Theorem 1: Let F, be the event that edge ej in the polygon is working and let F, be

the event that edge ej has failed. F denotes a compound event or state such as FFhFCFjdFf

and F denotes the set of all 26 such states. Also, z--I if F occurs and z,-0 if F, occurs. By

conditional probability,

R(GK) - J, pa qa pfzfqfl-zfR(GKIF) (2.2)

Only sixteen of the possible sixty-four states are non-failed states where R(GKIF)90.

Each non-failed state will induce a new graph with a corresponding set of K-vertices of which

there are only four different possibilities. Figure 2.4 gives these four graphs Gi.K,, i-1,2,3,4,

plus the summed state probabilities in each case, a, P, 8, and y. Thus, by grouping and elim-

inating terms, Equation 2.2 is reduced to

R(GK) - gR(GI KI) + PR(G2,K) + 8R (G3K) + -R(G 4 .K) (2.3)

Now G'K' is obtained from GK by replacing the polygon with a chain u, e,Y, v., v2, e, w

and redefining K as shown in Figure 2.5. Using conditional probabilities again,

R(G'K) - p,qpR (G'K.I (FF,)) + q,pp,R (G'Kl (FFF,))

+ p,p,q,R (G'K'I (FF,')) + p,pq,R (G'K'I (FFF,)) (2.4)

where only the non-failed states have been written.

The four non-failed states of G'K. induce the same four graphs which the non-failed states
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(a) Graph of Fig. 2.4 with Polygon Replaced by Chain
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of GK induce. Multiplying Equation 2.4 by a factor 0, we thus have

(I R(G'K.) - flp,q,pR(G,.K1 ) + flq,ppR(G 2.K)

+ flpp qR(G 33.K3 ) + flpopPR(G4,K )  (2.5)

Equating, term by term, the coefficients in Equations 2.3 and 2.5 gives

a - qpsp,- (l-p,)psp,

0 - flp,qp - lp,(1-p,)pt
8 - flpp~q, - flppAo(1-pj)

v - nP,iP "

These four equations in the four unknowns n, p,, p and p, may be easily solved to obtain

a+Y 04-Y
p, ' (a+Y)(P+Y)(8+ )

8+Y, 2

which are the values given in Table 2.1 for a type 7 polygon. The reader may verify that when

these values are substituted into Equation 2.4, we obtain

n R(G'K,) - aR(Gj,X1) + PR(G2,K) + 8R(G3,K) + YR (G 4,K)

- R(GK) o

Theorem 1 can be extended to give a result which can be useful for computing the relia-

bility of a general graph. In a nonsparable graph, a pair of vertices (u, v is a sepmrating pair

if G-GUd where Il;2, II>2, tlEn-o and VnV-(v,w). For example, vertices u and v

in Figure 2.5 are a separating pair. Using the same conditioning arguments as in the proof of

Theorem 1, it can be shown that any subgraph between a separating pair can be replaced by a

chain of 1,2, or 3 edges to yield a reliability-preserving reduction. For two special cases, it has

been shown that a subgraph between a separating pair can be replaced by a single edge

(Rosenthal (19741). The first case arises when the subgraph including the separating pair has

no K-vertices, and the second case arises when the separating pair belongs to K. The fact that

a chain can always be used to replace any subgraph, irrespective of the K-vertices, greatly

increases the generality of any algorithm which uses this reduction. In chapter 3 we will discuss

in detail how this extended reduction can be used and how the edge reliabilities for the derived

chains can be computed in an efficient manner.
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2.4 Properties of s-p Complex Graphs

In this section we set down some properties of series-parallel and, in particular, s-p com-

plex graphs. We prove that s-p complex graphs must admit a polygon-to-chain reduction if all

simple reductions have first been performed. Using this fact, we then outline a simple

polynomial-time procedure for computing the reliability of such graphs.

The following property is a simple extension of the definition of a series-parallel graph.

Property 2.2: Let G' be the graph obtained from 0 by applying one or more of the following

operations:

A series replacement;

A parallel replacement;

An inverse series replacement (replace an edge by two edges in series);

An inverse parallel replacement (replace an edge by two edges in parallel).

Then, G' is a series-parallel graph if and only if G is series-parallel.

Proof of Property 2.2 may be found in Duffin [1965J. The next property states that the

series-parallel structure of a graph is not altered by simple or polygon-to-chain reductions.

Property 2.3: Let G'K' be the graph obtained from GK by applying a simple reduction or a

polygon-to-chain reduction on GK. Then, G' is a series-parallel graph if and only if G is series-

parallel.

Proof: A series or degree-2 reduction implements a series replacement, and a parallel reduction

implements a parallel replacement on G. A polygon-to-chain reduction can be considered to

implement a sequence of replacements on G: first one or more series replacements, then a

parallel replacement, and finally one or more inverse series replacements. Hence, by applica-

tion of Property 2.2 one or more times, G' is series-parallel if and only if G is series-parallel. 0

An important implication of Property 2.3 is that, if GK is s-p complex, then application of

a simple reduction to GK results in a graph which again is s-p complex. On the other hand, a

polygon-to-chain reduction on GK results in a graph which is either s-p complex or s-p reduci-

-1-i



25

ble. By next proving that every s-p complex graph GK admits a simple reduction or a

polygon-to-chain reduction, it will be possible to show that R (GK) can be computed in polyno-

mial time for such graphs.

Property 2.4: Let GK be an s-p complex graph. Then, GK must admit either a simple reduc-

tion or one of the seven types of polygon-to-chain reductions given in Table 2. 1.

Proof: If GK admits a simple reduction, then we are done. If GK has no simple reductions, then

by Property 2.1, any polygon of GK must be one of the seven types given in Table 2.1. Hence,

we need only show that G contains a polygon. Let G' be the graph obtained by replacing all

chains in G with single edges. If G' contains a pair of parallel edges, then the two chains in G

corresponding to this pair of edges constitute a polygon. We argue that G' must contain a pair

of parallel edges. If G' has no parallel edges, no simple reductions are possible in G' since all

vertices in G' have degree greater than 2. Thus, G' and hence G are not series-parallel graphs,

which is a contradiction. 0

One simple procedure for computing R (GK) can now be outlined as follows: (1) Make all

simple reductions; (2) find a polygon and make the corresponding reduction; and (3) repeat

steps 1 and 2 until GK is reduced to a single edge. If GK is originally s-p complex, then Proper-

ties 2.3 and 2.4 guarantee that the above procedure eventually reduces GK to a single edge.

The actual reliability is calculated by initializing M-1, letting M-MOI j whenever a polygon-

to-chain reduction of type j is done, and letting M'-M(-q qb) whenever a degree-2 reduc-

tion is done on some edges e. and eb. At the end of the algorithm with a single remaining

edge e,, the reliability of the original graph is given by R (GK)-Mp.

The total number of parallel and polygon-to-chain reductions executed by this procedure,

before the graph is reduced to a single edge, is exactly IEI-IVI+I. This is because the number

of fundamental cycles in a connected graph is IEI-IVI+I, and a parallel or polygon-to-chain

reduction deletes exactly one such cycle (Deo [19741). The complexity of steps (1) and (2)

above can be linear in the size of G, and thus, the running time of the whole procedure is at

best quadratic in the size of G. In order to develop a linear-time algorithm, we have found it

- - - -- ~,
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necessary to move the parallel reduction from the domain of simple reductions to the domain

of polygon-to-chain reductions. Indeed, a parallel reduction is a trivial case of a polygon-to-

chain reduction with a multiplier /1-1. We will henceforth consider two parallel edges to be

the type 8 polygon and the parallel reduction to be the type 8 polygon-to-chain reduction.

2.5 An O(E) Algorithm for s-p Complex Graphs

The objective in this section is to develop an efficient, linear-time algorithm for comput-

ing the reliability of an s-p complex graph. This algorithm should also compute the reliability

of an s-p reducible graph as a special case and tell us if the graph is not series-parallel. All

results needed to present this algorithm have been established; however, some additional nota-

tion and definitions must be given.

If u and v are the end vertices of a chain X, then u and v are said to be chain-adjacent

When it is necessary to distinguish these vertices, we will use the notation X(u, v). A subchain

with end vertices u and v will also be denoted X(u, v), but in this case u and v cannot be said

to be chain-adjacent. If A is a polygon formed by two chains x1 (u, v) and x2(u, v), then we use

the notation A(U,V)-Xi(U,v)UX2(U,v). The algorithm is presented next, followed by a short

discussion and then a proof of its validity and linear complexity.

Algorithm 2.1
MAIN

Input: A nonseparable graph G with vertex set V, IV I>,2, edge set E, IEI>,2, and set K V,
1K2. Edge reliabilities p, for each edge eEE.

Output: R (Gy) if G is series-parallel or a message that G is not series-parallel.

Variables: GK and all vertex "marks" are represented by global data structures and variables.
All other variables are local.

(I) (Initialize) M-1.
(2) (Initialize list) Construct list, T-(v vEVanddeg(v)>2J marking all such v

"onist."
(3) (Perform all series and degree-2 reductions)

(a) For each vertex VEV such that deg(v) -2 and vYK, SERIESREDUCE(v).
(b) For each vertex vEV such that des(v)-2 and vEK, and while IEI>2,

DEGREE2REDUCE (v, M).

.. . . . ..I l I ll I . . .. . . .... .... . .. , _ A d
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(4) If T is empty then
(a) (G may be reduced to two parallel edges) If IEI-2 then Print(*R(GK)-"

M(l-qq) ) and STOP.

(b) (Otherwise G has not been completely reduced) Print("G is not series-
parallel") and STOP.

(5) (T is not empty) Remove any v from T and mark v "ofilist."
(6) (v may have been involved in a reduction since it was put on the list) If deg(v)-2

or v is marked "deleted" then go to (4).
(7) (Begin search or continue search for a polygon with one endpoint at v) Search

chains emanating from v until one of two cases occurs:

(a) (v is found to be chain-adjacent to 3 distinct vertices) 3 chains
X(v,ui), X(v,u,), (v,u 3) are found such that utu 2;du 3;du. In this case go
to (4).

or

(b) A polygon A(v,w) - XI(V,w)UX 2(v,w) is found.
(8) (A polygon has been found, make the polygon-to-chain reduction)

POLYREDUCE(A(v, w),X( v, w),M).

(9) If 1EI-IV then (G has been reduced to a single cycle)

(a) T-0.

(b) Go to (3).
(10) (G has not been reduced to a single cycle. Four cases can arise depending on the

new degrees of v and w.)
(a) If deg(t)>2 and deg(w)>2 then go to (7).

(b) If deg(t) >2 and deg(w)-2 then
(0) CHAINREDUCE(X( ,,w),X( Y,y),M).

() If y is "offlist" then mark y "onlist" and put y on T.

(0) Go to (7).
(c) If deg(v)-2 and deg(w)>2 then

(i) CHAINREDUCE(X(v,w),x(x,w),M).

(ii) If x is "offlist" then mark x "onlist" and put x on T.
(iii) If w is "offlist" then mark w "onlist" and put w on T.
(i) (Since Tcannot be empty) Go to (5).

(d) (Otherwise deg(-)'=2 and deg(w)==2)

(i) CHAINREDUCE(( ,, w),x(xty)tM).
(ii) If x is "oflhist" then mark x "onlist" and put x on T.
(Nl) If y is "olistw then mark y *onlist" and put y on T.

(i) (Since T cannot be empty) Go to (5).

End of MAIN.

SERIESREDUCE(v)

Input: A vertex v such that Y JK and deg( ) -2.

(This routine reduces GK by making a series reduction on the two edges incident on v.
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(1) Let x and y be the vertices adjacent to v and let eo-(v,x) and eb-(v,y).

(2) (Carry out the reduction)

(a) Delete edges e. and eb from GK.

(b) Mark v "deleted."
(c) Add new edge e,-(x,y) to GK.

(d) Pc-PaPb
(3) Return.

End of SERIESREDUCE

DEGREE2REDUCE( v, M)

Input: A vertex v such that vEK and deg( v) -2. Multiplier M.

Output: Revised value of multiplier M.

(This routine reduces GK by performing a degree-2 reduction at v if v is adjacent to two K-
vertices.)

(1) Let x and y be the vertices adjacent to v and let e.-(v,x) and eb-(v,y).

(2) If X,YEK then

(a) Delete edges e. and eb from GK.
(b) Mark v "deleted."

(c) Add new edge e,-(x,y) to GK.
Wd Pc-(P, Pb)/(l-qaqj.)

(e) M--M(l-q, qb)

(3) Return.

End of DEGREE2REDUCE

CHAINREDUCE ( X(v, w), (s, ),M )

Input: A subchain X ( v, w) obtained in a polygon-to-chain reduction of a polygon A (v, w). A
multiplier M.

Output: A completely reduced chain X(s,t) obtained from the chain containing the subchain
X (v, w). New multiplier M.

(This routine finds the chain containing the subchain X (v, w) and makes any series and degree-
2 reductions to this chain in GK.)

(1) If deg(v)>2 and deg(w)-2 then

(a) s-v
(b) Search from w away from v to find the first vertex t such that deg(1) >2.

(2) If deg(v)-2 and deg(w)>2 then

(a) t-w

(b) Search from v away from w to find the first vertex s such that deg(s) >2.

A'W
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(3) If deg(v)-2 and deg(w)-2 then
(a) Search from w away from v to find the first vertex t such that deg(t) >2.
(b) Search from v away from w to find the first vertex s such that deg(s) >2.

(4) Define the new chain X (s, t) which is a superset of the subchain X ( v, w).
(5) (Make any possible series and degree-2 reductions on X (s, t) in GK)

(a) For each vertex uEx(s,t) such that deg(u) -2 and u K,
SERIESREDUCE( v).

(b) For each vertex uEx(st) such that deg(u)-2 and uEK,
DEGREE2REDUCE (u, M).

(6) Return.

End of CHAINREDUCE

POLYREDUCE(A (v, w),X (v, w),M)

Input: Polygon A (v, w) and multiplier M.

Output: Chain or subchain X(v, w) resulting from polygon-to-chain reduction of A(v, w) and
new multiplier M.

(This routine reduces GK by making the polygon-to-chain reduction on A(v,w) in GK. It
returns the new multiplier M and the chain or subchain X (v, w) resulting from the reduction.)

(1) Determine which of the 8 types of polygons A( v, w) is, say type j.
(2) If j-8 then ( (v, w) is two edges in parallel)

(a) Let e. and eb be the two edges forming A( v, w).
(b) p"-4l-qoqb

(c) Delete eb from GK.

(d) Let X(v, w) be e,.
(2) If j<7 then (Apply Theorem 1)

(a) Update GK by replacing A (v, w) with appropriate chain X(v, w) as given in
Table 2. 1.

(b) Compute edge probabilities for edges in X (v, w) using the appropriate formulas
in Table 2.1.

(c) Compute fl j from Table 2.1.

(d) M-Mfl
(4) Return.

End of POLYREDUCE

Simplicity and clarity dictate that the algorithm be presented in a form which is not com-

pletely structured. The primary departure from a structured program occurs at Step (7) of

MAIN where chains emanating from a vertex v are searched. Here the algorithm searches

until it finds that v is chain-adjacent to three distinct vertices or until it finds a polygon. If

three chain-adjacent vertices are found, the next vertex from the list T is checked as long as T
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is not empty. If a polygon is found, then it is reduced by a call to POLYREDUCE. If deg()

remains greater than 2 after the reduction, the algorithm returns to Step (7) and continues the

search; no chains searched previously from v need be searched again.

One expediency has been the reduction of G to two parallel edges instead of to a single

edge. This device simplifies the program and allows us to avoid performing a polygon-to-chain

reduction on something that is not strictly a polygon by our definition, because both end ver-

tices are of degree 2. One final comment is that the list T could be any sort of simple linked

list, since the order in which the vertices are inserted and removed is unimportant. A stack

would be a convenient implementation.

The correctness of the algorithm is not hard to show. Arguments similar to those

presented here may be found in Valdes et al. [1981], where the problem is the recognition of

two-terminal series-parallel directed graphs. Suppose first that G consists of a single cycle. The

series and degree-2 reductions at Step (3) (all steps are in MAIN) will reduce GK to two edges

in parallel and T will be empty. The algorithm therefore gives R (GK) at Step (4.a).

Next, suppose that G does not consist of a single cycle, in which case Twill not be empty

and an initial search for a polygon will begin at Step (7). Since all initial series and degree-2

reductions were performed at Step (3), by Property 2.4 any polygon found must be one of the

eight specified types. If a polygon is found and then reduced at Step (8), the resulting chain

may in fact be a subchain. If this happens, some new series and degree-2 reductions may be

admitted on the chain containing the subchain. These reductions are made at Step (10.b),

(10.), or (Md). Thus, every time Step (7) is entered, the graph admits no series or degree-2

reductions, and any polygon found will be one of the eight given types.

Vertices are continually removed from the list T and replaced, at most two at a time, only

when reductions are made. Since only a finite number of reductions can be made, T must

eventually become empty. If E 1-2 at that point, then R (GK) is correctly given at Step (4.a)

since only reliability-preserving series, degree-2, and polygon-to-chain reductions are ever per-

formed. Property 2.4 proves that the original graph must have been series-parallel. Suppose
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instead that IEI>2 when T becomes empty. In this case, every vertex v with deg(v)>2 is

chain-adjacent to at least three distinct vertices. This is true since (i) every vertex v with

deg(v)>2 is initially put on the list and its chain-adjacent vertices checked at Step (7), and (i)

whenever the chain-adjacency of a vertex or vertices is altered (this can occur to at most two

vertices at a time) at Step (8), this vertex or vertices are returned to the list if not already

there. The following property proves that a graph with the given chain-adjacency structure is

not series-parallel.

Property 2.5: Let G be a nonseparable graph such that all vertices v with deg( v)>2 are chain-

adjacent to at least three distinct vertices. Then, G is not a series-parallel graph.

Prof: Let G' be the graph obtained from G by first replacing all chains with single edges in a

sequence of series replacements and then removing any parallel edges in a sequence of parallel

replacements. By Property 2.2, G is series-parallel if and only if G' is series-parallel. Now,

every vertex vEV' has deg(v)>2 and there are no parallel edges in E'. Thus, G' admits no

series or parallel replacements and cannot be series-parallel. Therefore G cannot be series-

parallel.0

This proves that if the algorithm terminates with [El>2, the reduced graph is not series-

parallel, and Property 2.3 proves that the original graph could not have been series-parallel

either. Thus, the validity of the algorithm is established. We now turn our attention to the

algorithm's computational complexity.

In order to show that the algorithm is linear in the size of G, we must provide more

details of its implementation. We use a multi-linked adjacency list form to represent the given

graph G. In this representation, for each vertex a doubly-linked list of adjacent vertices

corresponding to incident edges is kept together with the associated edge probabilities. Every

edge is represented twice since we are dealing with an undirected graph, and additional links are

kept between both representations of each edge. Such an adjacency list can be initializeu in

O(IVI+IEI) time for any graph. However, our assumption that the input graph is nonseparable

and contains at least two edges implies that IVl1 IEI, and therefore, the complexity is simply
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O(E). For the same reason, the complexity of the whole algorithm will be O(IEI).

Using the graph representation described above, it is obvious that any series or degree-2

reduction can be carried out in constant time. Since POLYREDUCE only needs to check for

eight different types of polygons, all of limited size, any polygon-to-chain reduction can also be

carried out in constant time. Also, none of the reductions ever requires the use of more ver-

tices or edges after the reduction than before. This means that if any new edges or vertices

must be defined, old ones can be reused and the size of the graph representation is never

increased.

Now, Steps (2) and (3) in MAIN can be performed in O(IVI) time; therefore, we need

only consider the central portion of MAIN, Steps (4) through (10). Each time chains emanat-

ing from the current vertex v are checked at Step (4), the maximum amount of work which

can be performed is some constant amount, i.e., the amount needed to find three chains with

distinct end vertices u1 , u2 and u3, plus some amount of work proportional to the number of

polygon-to-chain reductions made from v. Initially, at most all the vertices can be on the list,

and after every polygon-to-chain reduction, at most two vertices can be returned to the list. An

upper bound on the number of vertices which can ever be checked is therefore

IVI+2(IEI-IVI)-2E1-IVI, since at most IEI-IvI polygon-to-chain reductions can ever be

performed by POLYREDUCE. For some constant C1, the total amount of work required until

T becomes empty will thus be bounded by C1 (2IEI-IVI) plus the amount of work required to

make all polygon-to-chain reductions using POLYREDUCE and the subchain reductions using

CHAINREDUCE.

We have already shown that the amount of work required by a polygon-to-chain reduction

in POLYREDUCE is bounded by a constant. However, after a call to POLYREDUCE which

reduces A(v,w) to X(Yw), a call to CHAINREDUCE is necessary if deg(v)=2 or deg(w) -2.

The chain X (s,t) containing the subchain X( v, w) must be identified and then reduced, if possi-

ble, with series and degree-2 reductions. This can be accomplished in constant time also, since

the length of any chain X(s, ) is at most 9. This worst case could occur if deg(v) =deg(w)-2
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after the polygon-to-chain reduction of (v,w) to X(v,w), and the subchains X(sv), X(w,g)

and X(v,w), which were proper chains before the reduction, are at their maximum possible

lengths of 3. It therefore follows that the amount of work associated with a polygon-to-chain

reduction, a call to POLYREDUCE and a possible call to CHAINREDUCE, is bounded by

some constant, say C2, and that the amount of work associated with all polygon-to-chain reduc-

tions is bounded by C2(jEI-IVI). We can now see that the amount of work required until T is

empty is bounded by CI(21EI-IVI)+C 2(IEI-IVI). The only work which is unaccounted for

comes from the final series and degree-2 reductions which may be necessary if G is reduced to

a single cycle, but again, this is an O(IVI) operation. Thus, we have proven the following

theorem:

Theorem 2. Let G be a nonseparable series-parallel graph. Then, for any K, R (GK) can be

computed in O(IEI) time.

2.6 Extension to General Networks

The algorithm of section 5 can be extended to make all possible simple and polygon-to-

chain reductions in a nonseries-parallel graph. In this way, the extended algorithm can be used

as a subroutine in a more general network reliability algorithm for computing R (GK) when G

is not series-parallel. The complexity of computing R (GK) can often be reduced to some

degree by this device.

Suppose the reduction algorithm of section 5 starts with a nonseries-parallel graph G.

After termination of the algorithm, GK may or may not have been partially reduced. From the

proof of Property 2.5, the only possible remaining reductions are polygon-to-chain reductions.

Each such polygon-to-chain reduction would correspond to a parallel edge replacement used to

obtain the graph G' of that proof. Therefore, GK can be totally reduced by first applying the

algorithm and then finding and reducing any remaining polygons, which can easily be done by

searching all chains emanating from all vertices v with deg( ,) >2.

To extend the reduction algorithm as described, Step (4) in MAIN may be replaced by
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the following, Step(4'):

Algorithm extension, changes to MAIN

(4') If T is empty then

(a) (G may be reduced to two parallel edges, e. and eb) If IEI-2 then
Wi R (G.)'-M(l -qaqb).

(ii) Return to general algorithm with R(GK).

(b) (Otherwise G has not been completely reduced) For each vYV such that
deg() >2, search all chains emanating from v calling
POLYREDUCE(A(v,w), X( v, w),M) whenever a polygon
A(v,w)-Xi(v,w)Ux 2(v,w) is found.

(c) Return to general algorithm with reduced GK and with M.

In the worst case at Step (4'.b), each chain and thus each edge must be searched twice. There-

fore, the added computation is O(IEI) and the algorithm with the extension remains O(IEI).

To illustrate the usefulness of the extended algorithm for a general graph, let us consider

the ARPA computer network configuration as shown in Figure 2.6a (Fratta and Montanari

[19731). Suppose we are interested in the terminal-pair reliability between UCSB and CMU.

Application of the extended algorithm yields a reduced network as shown in Figure 2.6b with

redefined edge reliabilities and an associated multiplier. The original reliability problem is now

equivalent to computing the terminal-pair reliability between RAND and CMU in the reduced

network. In linear time the size of the network has been reduced considerably and, because

computing the reliability of a general network is exponential in its size, a significant computa-

tional advantage should be gained.

2.7 Extension to Networks with Unreliable Vertices

For the reasons mentioned in Chapter 1, networks with unreliable vertices are not being

covered in any depth in this paper. However, the reductions and algorithms of this chapter can

be easily extended to handle unreliable vertices and therefore the necessary details are included

here.

Only two basic changes need be made: The series reduction must be modified to include

the failure probability of the degree-2 vertex and polygon-to-chain reductions must be modified

- -. l . . .. -
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to include the failure probabilities of their end vertices. To extend the notation to unreliable

vertices, the reliability of any vertex vi'K is denoted by p, where the subscript i is a numeral.

Where p, must be redefined in Table 2.2, p7 is used to signify this redefined value Now the

modified series reduction is obvious. Let two edges in GK, e.-( vi, v2) and eb-(V2, v) be can-

didates for a series reduction, i.e., deg(v )-2 and v2 K. Then e. and eb may be replaced by a

single edge e--(v1,v) to obtain G'K where Pc"P.PbP2 so that R(GK)-R(G'K). The reliabili-

ties of vi and v3, if defined, are unchanged.

The modified polygon-to-chain reductions are not so obvious but may be derived by the

method of Theorem 2.1. It is only necessary to condition first on whether or not unreliable

vertices are working and include the additional variables pl' and P2' corresponding to the unreli-

able vertices v, and v2. Conditioning on a vertex, say v1, failing simply induces the graph

GK- v, while conditioning on the vertex working just gives us back GK but with v, having per-

fect reliability as in the normal case. Note that in two of the reductions there is only one non-

K-vertex and in these cases there is only one unreliable vertex and only one additional variable

since K-vertices are always assumed completely reliable. Table 2.2 lists the extended polygon-

to-chain reductions. Their proofs are omitted since they are simple extensions of Theorem 2.1.
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TABLE 2.2

Polygon-to-Chain Reductions with Unreliable Vertices

Note: Darkened vertices represent K-vertices

Polygon Type Chain Type Reduction Formulas New Edge Reliabilities
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Chapter 3

Triconnected Decomposition for the K-Terminal Problem

3.1 Introduction

Suppose we have a graph GK with separating pair (u, vi. Recall from the previous chapter

that this means that GK can be partitioned into two graphs G and GK such that GK-GKU G k,

IEI42, 1I1>I2, E nEo'- and VfV-(u,v). (The K-vertices in the above expressions are not

part of the definition of a separating pair but are necessary for explaining the results of this

chapter. We define K-K( V and K-Kf V.) It has been known for some time that for certain

configurations of the K-vertices, it is possible to replace G or Gd with a single edge e-(u, V)

so as to yield a reliability-preserving reduction on GK. (Birnbaum and Esary 119651, Rosenthal

[19741) For other configurations however, this is not possible. Rosenthal [19741 was forced to

employ *hyper-edges" to handle these other cases where a hyper-edge could have three states:

working, failed and system-failed. Unfortunately, such a reduction destroys the simplicity of

the graphical model.

In this chapter, we present a method by which a Subgraph between a separating pair may

always be replaced by a chain of one, two or three edges. Although the proofs are quite gen-

eral, we may normally assume that the subgraph to be replaced is a "pseudo-triconnected com-

ponent,* that is, the subgraph would be a triconnected component if all its chains were replaced

by single edges. This is a natural way to look at the problem since a graph can be efficiently

decomposed, with respect to its separating pairs, into its triconnected components using the

algorithm of Hopcroft and Tarjan [1973). These components are of minimal size and result in
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computation being minimized. Hagstrom [19801 shows how to use the decomposition tree pro-

duced by the Hopcroft and Tarjan algorithm to compute reliability in the two-terminal case, and

it is a simple extension to use those methods in the K-terminal case. Computational complex-

ity of a problem becomes proportional to the complexity of the largest triconnected component

in the graph if this decomposition is used in a one-shot manner on a given graph. Even greater

advantage should be obtained if this decomposition were used as one of the reductions

employed in a general factoring algorithm.

In the following sections we first discuss triconnected decomposition and how it should be

applied to the K-terminal reliability problem. Next, we prove that it is always possible to

replace a subgraph associated with a separating pair tu,v}, with a chain X(u,v) consisting of

one, two or three edges. These proofs do not indicate how to compute the necessary chain-

edge reliabilities and multiplication factors for the reductions, so, in the following section, we

show that the necessary calculations can be carried out by computing the K-terminal reliability

of one, two, three or four graphs defined from the triconnected component alone. In the final

section, the results are extended to the case where vertices may be unreliable.

3.2 Triconnected Decomposition of a Graph

A necessary concept for this discussion is that of the vertex connectivity of a graph

G-(V,E). The definition varies somewhat from author to author and from application to appli-

cation; we offer the definition from Tutte [19661 which is used in his discussion of triconnected

decomposition. Let V0 be a subset of the vertices of V and let G-V 0 be the graph obtained

from 6 by deleting all vertices v EVo and all edges incident to those vertices. Suppose VO is the

smallest set of vertices such that G-V 0 is disconnected or IV-V 0 1-1. Then G is said to be k-

nnmecWt if IV0 4 k. We are using the terms "biconnected" and "triconnected" to mean 2-

connected and 3-connected, respectively.

The basic irreducible element of a graph in the K-terminal reliability problem is, in some

sense, not the edge but the chain. As we will show in the next section, any subgraph between

a separating pair can be replaced by a chain in a reliability-preserving reduction. However, if
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this subgraph is already a chain, our reduction is not terribly useful. With this in mind, let G +

be G with all chains replaced by single edges. Then G is said to be pseudo-triconnected if G+

is triconnected. If G is pseudo-triconnected, then we may be able to decompose G along its

separating pairs as described below, but it will be of no use as far as calculating reliability goes.

Even if the graph is not pseudo-triconnected we may separate out chains needlessly. However,

this does not increase the asymptotic complexity of the decomposition algorithm so we ignore

the problem.

Suppose we have a graph G which is biconnected but not triconnected. We hope that G

is not pseudo-triconnected; that would be boring. G can be uniquely decomposed into a tree of

triconnected components consisting of simple cycles, bonds (three or more edges in parallel)

and triconnected graphs with no parallel edges. These components contain artificial "virtual"

edges as will be described below, following Hopcroft and Tarjan [19731. Let {u, v) be a separat-

ing pair of G, define G and G as in the first section and let i-(u,v) and e-(u,v) be two vir-

tual edges which will be considered to be brothers. G can be decomposed into two split graphs

6+i and G+e. Each split graph can be split again and again until all split graphs consist of tri-

pie bonds (bonds with three edges), triangles and triconnected graphs. These graphs are called

split components of G and are not necessarily unique. Now define a merging operation to be

the reverse of a splitting operation, including the deletion of both virtual-edge brothers. By

merging triple bonds with each other and by merging triangles with each other, a unique set of

bonds, simple cycles and triconnected graphs will be created. These triconnected components

will be arranged in tree-fashion, with nodes representing components and branches representing

splitting operations. Here the terms "node" and "branch" are used to refer to the vertices and

edges of a graph which is not a probabilistic graph. If desired, the original graph G can be

reconstructed by merging any leaf component with the component containing the brother of its

virtual edge and recursively repeating this process on the reduced tree until no more virtual

edges remain.

Lichtenstein [19811 uses a different definition of "triconnected" and indicates how to con-
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struct the decomposition tree directly, without resorting to merging. His definition of tricon-

nected is: *A graph G is triconnected if there exist at least three node disjoint paths between

every pair of vertices." This means that bonds are also considered triconnected and the decom-

position uniquely decomposes G into triconnected graphs and exactly blcounected graphs. An

exactly biconnected graph has exactly two node disjoint paths between every pair of vertices and

is thus a simple cycle. Using either outlooks on the problem, the decomposition can be carried

out very efficiently, in time which is linear in the number of vertices and edges of the graph.

Now, the leaf nodes of the decomposition tree will be of the form G+e where i-(u, v) is

a virtual edge and d is a subgraph of G such that G Ud- G, tEn E-o and V n V-( u, V). So

(u, v) is a separating pair and, as will be proven below, dg may be replaced by chain in a

reliability-preserving reduction. This can be carried out in the tree by deleting G and i and

replacing the brother of e with the derived chain. After this replacement either the decomposi-

tion tree is reduced to a single node or there remain leaves which can be replaced in a

reliability-preserving fashion as just described. Of course, some degree-2 or series reductions

may also be admitted and these may be performed as they appear. After repeated reductions,

the tree is eventually reduced to a single node which is a graph with no virtual edges. This

graph is either a simple cycle or a pseudo-triconnected graph, either of which may admit some

series or degree-2 reductions. After making any final reductions, the reliability of the original

graph, R (GK), is given by the reliability of the reduced graph times the product of all the mul-

tiplication factors derived in any of the reductions. If the remaining graph has been reduced to

two edges in parallel then we are essentially done. If not, then we must apply some general

method to compute the reliability of the remaining graph.

3.3 Trieonnected-Component-to-Chain Reductions

In this section we simply show that any subgraph with separating pair (u, v) can be

replaced, in a reliability-preserving reduction, by a chain consisting of one, two or three edges

between u and v. This is a general result which need not be applied to triconnected com-

ponents derived from the decomposition described in the previous section. However,

,.
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decomposing the graph as completely as possible and making these reductions would normally

be the most computationally efficient procedure. The proof of the triconnected-component-to-

chain reduction is based largely on state enumeration and does not indicate, except in the first

case, how to calculate the chain-edge reliabilities and multiplication factor efficiently. That dis-

cussion appears at the end of this section.

Theorem 3.1: Let GK be a nonseparable graph with separating pair (u, v) such that

G6-GLU Gd where V'V-ju, v), IEI>2, 1M>,2 and tnE-0. Then ek may be replaced by a

chain X(u, v) consisting of one, two or three edges to obtain a reliability-preserving reduction of

GK to G'., G UX(u,v).

The proof below is divided into six parts depending on the configuration of the K-vertices

in G. The first two parts are cases which can be found in the literature; the last four parts are

new. Parts (d), (e) and (f) are similar to (c) and will be somewhat abbreviated. Figures 3.1-

3.5 illustrate the proof.

Proof of Theorem 3.1:

(a) Suppose Ik-u-v-0. (Vertices u and - ,nay or may not be elements of K and k as indi-

cated by crosses within the vertices, Figure 3.1a.) Birnbaum and Esary [1965) establish, and it

is fairly obvious, that d may be replaced by a single edge e,-(u,v) with p,-R({,.), so that

R (GrOK R ('). See Figure 3.1a.

(b) Suppose u, YEK and K-u- v0. Rosenthal (19741 proves that G; may be replaced by a

single edge e,-(u, ) with p,-R(G t)/f so that R(Gy)-flR(G.). f1 is defined in terms of

Gt alone, by 1l-Prob(All wEK can communicate with u or v). In other wods, [I is the pro-

bability that the states of the edges in G do not imply that GK has, a prior4 failed. See Figure

3.lb.

(c) Suppose uEK, or vEK but not both, and K-u-v;*M. Assume, without loss of generality,

that uEK and viK. As in the proof of Theorem 2.1, we can condition on the compound states

of the edges in G so that
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R(GK)- . Prob(F)R(GKIF) (3.1)
fc a

where F is the set of all 2 12 states of d, F indicates one of those states, and Prob (F indica3tes

the probability of the state F occurring, i.e., Prob(F)- I I where z1-1 if e, works in F

and z1-O if e, fails in F. Now F can be divided into four mutually exclusive and exhaustive

classes F,, i-0,1,2,3:

Fo - IIEF: In it IF, some wE k can communicate with neither u nor v.)

F, - IfEF: In ,LF, all WEk can communicate with u or v but not both and there is at

least one such w which can communicate with v.)

F2 - (FEF: In G 1jjF, all wEk can communicate with u but not with v.)

F3 - FEF In dgIF, all WEk can communicate with both u and v.)

Since GK is nonseparable, F1, F2 and F3 are nonempty. R(GKIf)-O for all FRF 0 and may

therefore be disregarded in the remainder of the proof.

By the definition of the Fj, i-1,2,3, any state FEF will induce the graph GIK, as shown

in Figure 3.2. Letting

a- 1, Prob(_F) P- ,Prob(_F) 8- 1: Prob(F) (3.2)
fEF1  FE 2  f(F 3

and by grouping and eliminating terms in Equation 3.1 we have

R (GK) - xR (G],g) +PR (G 2,12) + 8R (G 3. 3 ) (3.3)

Now let G'K' be GKUX(u, v) where the chain X(u, v) contains edges e, and e, as shown on the

right hand side of Figure 3.1c. With these edges we associate p,, p, and (I defined as follows:

- 8 JI (a+8) (P+8) (3.4)a+8 P +--8 8

Conditioning on the edges e, and e, in G'K' induces the same non-failed subgraphs (Figure 3.2)

G,.K,, G2,K2, G3,K3 with respective probabilities, q,p,, p,q3 , and P,P, Therefore

(I R(G'K,) - flq,p,R(G1,K,) + lp,qR(G2,K) + (1p,p,R(GU,)

- aR(Gi,K|) + SR(G 2,K) + 8R(G3, 3)

- R(GK)

h.,- -...
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Thus, any component of the specified type may be replaced by a chain as shown in Figure 3. Ic

with p,, ps and f' defined via Equations 3.2 and 3.4, and this will be a reliability-preserving

reduction.

The above reduction is valid if k-K but we might not want to approach the problem in

that manner. K-K implies that K-u-0, and consequently it is possible to replace G with a

single edge e,-(u, v) with reliability p,-R (Gi.,)v to yield the reliability-preserving reduction

described in (a) above. If we do wish to operate on G first however, the reduction can be

simplified. If k-K then R (G2.K)-R (G3,K 3)-1 and thus,

R(GK) - aR(G,Kl) + 0 + 8 (35)

We needn't replace G with a chain at all but rather find a, P and 8 and then R (GI,K 1). From

the definitions of a and 8 we see that R (Gk)-+8. Computation of a is discussed in

Theorem 3.2. Equation 3.5 may be thought of as an extended reliability-preserving reduction

of the form R(GK)-fl I+fi2R(G'K) where the graph replacing the subgraph G is null.

(d) Suppose u, vOK and k-1w). Furthermore, assume that k;d0 since otherwise R(GK)-----.

The possible states of dit may be partitioned into four classes F, i-0, 1,2,3:

F0 - (fE F: In Gt IF, w can communicate with neither u nor v.)

F, - (FEF: In IF, w can communicate with v but not with u.)

F2 - (Fc F: In tIF, w can communicate with u but not with v.)

F3 - {FeF: In ,KF, w can communicate with both u and v.)

Now define a, P and 8 as in Equations 3.2, but with respect to the above F,. Noting

again that R(GKIF)-0 for all FEF 0, the remainder of this proof is identical to that in (c)

except that the induced subgraphs are different. See Figure 3.3. Defining p,, ps, and 0i as in

Equations 3.4 makes the transformation ii Figure 3.1d a reliability-preserving reduction.

(e) Suppose u,v K, Ik I>2 and K;d (Figure 3.1e). The set of possible states F for Gk may

be partitioned into five classes F,, 1-0,1,2,3,4:

.. .- . . .. ... ... . ... .. . . . .. . . .. .. . i . ..Il , . .
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Fo - {FEF: In dCIF, some wEk can communicate with neither u nor v.)

F, - {FEF: In GkIF, all wEk can communicate with v but not with u.)

F2 - (FEE: In G.IF, all WEk can communicate with either u or v but not both, and at

least one vertex xEk communicates with u, and at least one vertex yEk communicates

with v.}

F3 - (FEF: In GkjF, all WEk can communicate with u but not with v.1

F4 - (FE: In dgtIF, all wEK can communicate with both u and v.)

Again, R(GKIF)-O for all FEF& Any state FEF,, i-1,2,3,4 will induce the subgraph

Gv., from GK as shown in Figure 3.4. Letting

a- ,Prob(F) P - T. Prob(F) 8 - I Prob(F) y- ,Prob(F) (3.6)
f4EF fe F2  fe F3  fe F4

we have

R(GK) - aR(G.K,) + #R(G 2K) + 8R(G 3K) + ,R(G4.K)

Now let G'K, be GK with dr replaced by the chain X(u, v) comprising edges e,, e, and e, as

shown in Figure 3.e. Define p,, Ps, P, and f(:

Pr -- Y P '+,
.. ' + (3.7)

Y+ 2
Conditioning on the edges e,, e, and e, in G'K' gives, in a similar fashion to (c):

fl R(G' ) - fl pqp,R (G,,K1 ) + l q,ppR (G2,K2) +

fl p,p,qjR (G3,K) + 0 pp,pR (G4.K)

- aR(Gj,K1) + PR(G 2.x) + 8R(G 3,.1 ) + yR(G 4,)

- R(GK)

Thus, any subgraph of the specified type may be replaced by chain as shown in Figure 3. 1e with

p,- p,, pt and 11 obtained from Equations 3.6 and 3.7, and this will be a reliability-preserving

reduction.
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(f) Suppose u, vK, (I>2 and k-0 (Figure 3.1f). The set of states F of GK may be parti-

tioned into three classes F,, i-0,1,2:

F0 - (FeF: At least one wEK can communicate with neither u nor v and fails to com-

municate with at least one other vertex y ,)

F, - {FEF: All wEk can communicate with u or Y but not both, and at least one such

vertex communicates with u and another with v.)

F2 - IE F: All w E k can communicate.)

As before, R(GKIF-0) for all FEFO. Any state in F, will induce the graph GI,K, (Figure

3.5). States of F2 will induce graphs G2,K2, G3,K3, G4,K, and GS,K. Letting

a- Z Nob(F) - Prob(M
fey, fe F2

and noting that R(G 2 K )-R(G3.K)-R(G4,K)-R(Gs,K)-I since K-0, we have

R(GK) - aR(GI.K,) + j8R(G2,K)

Now let G'K. be GK with Git replaced by a single edge e.-(u, v) and where K'-(u, v). Defining

P"a+ 8 -+

we have

flR(G'K') - flqR(GI,K,) + flPrR(G2,K)

M aR(GK,) + PR(G 2,K)

- R (GK)

Thus, we see that dit can be replaced by a single edge. Of course, R (G2,K)-I and therefore

R(GK) - aR (G,,K,) + P - aR(Ol...) + P

This, as mentioned in (c) above, is an extended reliability-preserving reduction where we

replace a subgraph with a null graph.

Any triconnected component with associated K-vertices fits into one of the above six

categories and thus, any such component may be replaced by a chain of one, two or three edges

in a reliability-preserving reduction. r3
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It now remains to be shown how the reductions of Theorem 3.1 can be carried out in an

efficient manner, or at least in a manner which is more efficient than state enumeration. We

will, in Theorem 3.2, prove that only one, two, three or four K-terminal reliability problems

defined on G need be solved in order to compute chain-edge reliabilities and multiplication fac-

tor f) in any of the reductions.

In the following discussion, the notation Gfuvi is used to indicate the graph G in which

vertices u and v have been coalesced to form the vertex u-uU v. Lemma 3.1 below is used

to simplify the proof of Theorem 3.2. The proof of the lemma is stated in terms of a general

graph GK but, in fact, will be applied in Theorem 3.2 to the graph GV, the subgraph of GK.

Lenma 3.1: Let GK be a graph with two specified vertices u and v such that K-u-v0.

Then

Prob(All wE K-u-v can communicate with u or 0 - R(GKI[UV)

where K-K-u-v+u'.

Proof: Since G and G[uv] have the same edge sets, any state F of G[uv] is a state of G and

vice versa. What we must show is that every state F in which GK'[UVJ IF is working implies, in

a one-to-one correspondence, that all wEK can communicate with u or v in GKI F.

Let F be state of GK in which all wEK can communicate with u or v, i.e., there exists a

path of working edges from every vertex wcK to u or v in GKIf. Every such path must

correspond to a path of GK'Iuv] IF from wEK' to u' so that GK'Iuv] F is working.

Conversely, if F is a working state of GK'(uv], then all WEK' can communicate with u',

i.e., there exists a path of working edges in GK'[UV]_f from each wEK' to u'. But any such

path corresponds to a path in GKIF from w to u or v. Thus any working state of GK'[uvi

corresponds to a state in GK in which every vertex wEK can communicate with u or V. 0.

Now, without further ado, we state and prove Theorem 3.2.

Theorem 3.2: Let GK be a graph with subgraph din and associated separating pair (u, v} as in

Theorem 3. . Then the subgraph-to-chain reduction can be carried out, i.e., all chain-edge reli-

I,, J - .. . . . . . . .P
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abilities and the factor fl computed, by solving one, two, three or four K-terminal reliability

problems defined on G.

Proof: Cases (a)- (f) here correspond directly to cases (a)- (f) in Theorem 3. 1.

(a) (k-u- v-0) R (GK) is affected by G only in whether or not u and v can communicate

through G. Therefore, r; is replaced by the e4ge e,-(u, v) with p,-R(Gee,,}). Only a single

two-terminal reliability problem defined on G must be solved here.

(b) (u, VEK and K-u-v~eO) Here, two problems must be solved to derive P, and 1l. By

Lemma 3.1,

0l - Prob(All wE -u-v can communicate with u or 1)

- R(GKD[UVI)

where K'-K-u-v+u'. So 0 can be computed by coalescing vertices u and v in Gd, making

the coalesced vertex u' a new K-vertex and computing the reliability of the resulting graph.

Since p,-R(dtK)/ f, p, can be obtained after computing 11 and the reliability of t.

(c) (ufK, vOK and K-ui0) All that must be shown here is how to .ompute a, P, and 8,

since Pr, p5, and il can be derived from those values. From the definition of a, P and 8 we

have

R (de.J-) 8 (3.8)

e(d t ) - ,P + 8 (3.9)

and by Lemma 3.1

R(G _.+.,[u]) - a + + 8 (3.10)

Solving these equations for a, # and 8 is trivial and thus, this reduction can be carried out by

solving three reliability problems defined on G.

If Ik-ui-I in the above case, the next equation is also valid and may be used to replace

Equation 3.10:

R(de-.+,) - a + 8

This equation has the advantage that no coalescing of vertices has to be performed and the

complexity of computing reliability on the original component may be less. For example, G



54

may have a series-parallel structure which is destroyed by coalescing u and v.

(d) (u, Y4K and k-(w)) Analogous to Equations 3.8, 3.9 and 3.10, but with the definitions of

a, #, and 8 from Theorem 3.1 (d), we have

R(Gt+, ) -(8

R(;l+,) - # + 8

R(6.+,) - a + 8

which are easily solved. Note that in lieu of any one of the above equations,

R(k+,,[ uv]) -a + 0 + 8

could also be used.

(e) (u, vK, I kI>2 and KP90) From the definitions of a, , 8 and y in Theorem 3.1(e), and

using Lemma 3.1, the following relations hold:

R (lk++,)- v
R(6v'+.) - 8 + v
R(Gk+) - a + v
R(Gl+..(u V]) - a + P + 8 + v

These too are easily solved.

() (u, vlK, II>2 and K-e) From Theorem 3.1(f) and Lemma 3.1 we have

R(Gi+t.uvI) -a

and therefore this reduction can be carried out by solving two reliability problems defined on

Therefore, by solving one, two, three or four reliability problems on G, G7 may be

replaced by a chain of one, two or three edges so as to yield a reliability-preserving reduction. 0

3.4 Extension to Unreliable Vertices

The results of the previous two sections may be generalized to handle separating-pair ver-

tices u and v which may be unreliable. Other vertices in the graph may be unreliable also

without affecting any of the results. We will not provide proofs here but just give the necessary

. '
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information to carry out the reductions. As in section 2.6, the notation will be changed to

emphasize the fact that the separating-pair vertices are unreliable. We let v1 correspond to u

and V2 correspond to Y, and indicate respective vertex reliabilities by P, and P2 for the original

graph GK and p,' and P2' for the reduced graph G'K,. The reduction process is naturally more

complex here but in all cases (a)-(f), the new chain to be introduced is the same as in Theorem

3.1 (a)-(f). In order to compute all parameters for these reductions it may be necessary to

evaluate the reliability of up to six different graphs defined from G, including the reliability of

that graph with v, or V2 deleted.

Theorem 3.3: Let GK be a graph whose non-K-vertices may be unreliable. Also, let GK be a

nonseparable graph with separating pair (vi, vJ such that GK--GJ G6 , flV-{ v1, ,2} En -- ,

It.I>, 2, and IEt>2. Then Gk may be replaced by a chain X(v2, v2) consisting of one, two or

three edges to obtain a reliability-preserving reduction of GK to G'K'-GKUx(vj, v2). Further-

more, all chain-edge reliabilities, vertex reliabilities and any multiplication factor can be

obtained by computing the reliability of no more than six problems defined on G.

The reductions below depend on computing the reliability of a graph in which one or two

vertices have been conditioned to be working or failed. When a vertex v1 is failed in graph G k,

it and its incident edges are deleted and we use the notation g- vi, which was introduced ear-

lier. We use the notation Gf.1 vi. when vertex v, is working, i.e., is perfectly reliable. The ver-

tex v-vIU v2 is always assumed to be perfectly reliable. Cases (a)-(f) below correspond

directly to cases (a)-(f) in Theorems 3.1 and 3.2.

(a) (K-vj-v2-0) Here, p,-R(Gid,, }) and if vjJK then Pl"'Pi and if v2 lK then P2'"P2.

(Recall that any K-vertex is considered completely reliable so if vIEK or V2EK here or below,

we do not explicitly refer to the reliabilities of these vertices.)

(b) (V1, v2 EK and k- V1- v2 i0) There is no change in this reduction since U, vEK.

(c) (vEK, vAfK and K-u- v",) New multiplication factor and reliabilities are given by

8 8

B208 M (a+8) (0+8+40
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Parameters a, A, 8 and , can be obtained from the following equations:

R (GijV2)P2 -P + 8
R( ),'I.[vv2 )p2 - a + P + 8

R(G~t-v2 q2 -

(d) (u, v'K and It-{ w) The new multiplication factor and reliabilities are given by

8 . 8
I, 2+8 P2S--

a+8 P2"'- +8

(- (+++-0)
8

Parameters a, P, 8 and # can be obtained from the following equations:

JR(G+ 1 2 V1, V')PIP2 -8

R(G 1 vj, Y2)pjp2 - + 8

R (G+,vI v, vp 1p2 - a + 8

R (G 2  V v2)qP 2 -

R (t+, 1-v 21 v)p 1q2 - 0

(e) (u, v K, I I2 and K#0) The new multiplication factor and reliabilities are given by

p,m.-..._._.

8.+ a+-+ +

P2'- 8+ (,7+0)(8+Y)(+Y+)

Parameters a, P, 8 and y can be obtained from the following equations:

A (dl+'I 1 , " 2)pzP2 - VY

R (r;t+, I VI, V2 PIp 2 - 8 +v7
R (dt+,2 , V, )Pp 2 - a +Yv

R(Gt+,,4vv 2I)pjp2 - a + P + 8 + v

R •i ~~q
iR V 2 .. . . . . .. . . . .P' q 2 . . .. .. . . .0 n i Il I l " . . . .
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Mf (V1, V2jK, IkI >2 and k#0o) In this reduction v, and V2 become K-vertices and thus we do

not explicitly aefine P1' and P2'. The multiplication factor and edge reliability for this reduction

are given by

Parameters a, 0 and 0 may be obtained from the following equations:

R (dt+,)+, W2 V', V 2) P1. 2 -

R~dt+,1V12DPP2- a +

R(GK-v 1 Iv2)qLP 2 + R(691-V 21 v1)plq 2 + R(dk-vi-v 2)qjq 2 -0
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Chapter 4

Polygon-to-Chain Reductions and Factoring

4.1 Introduction

In this chapter we investigate the complexity of computing K-terminal reliability when

using a factoring algorithm coupled with simple reductions and the new polygon-to-chain reduc-

tions of Chapter 2. We place one restriction on edge selection and establish a optimal edge-

selection strategy for a factoring algorithm when 24 IKk45 or IVI-2<l KI< IVI. The amount

of work performed by this algorithm is showii to be proportional to a combinatorial invariant of

G called the minimum domination. When the restriction on edge selection is removed, algo-

rithmic complexity is essentially unchanged for IV-2 <IKI(IVI but, for IKI in the lower

range, minimum domination turns out to be only a tight upper bound on complexity. These

new results are significant from a computational viewpoint since minimum domination may be

exponentially smaller than the computational bound attainable without using polygon-to-chain

reductions.

A factoring algorithm for computing K-terminal reliability is essentially an implicit state

enumerator. We recursively apply Equation 1.3, making reductions and attempt to avoid zero

reliability graphs so as to enumerate explicitly as few states as possible. We stop when the reli-

ability of the reduced graphs can be computed directly without further factoring. A recursive

algorithm of this type is a backtrack procedure because a partial solution is extended until com-

pletely solved; the algorithm backtracks to the last created partial solution and extends that

solution; and continues on in this way until all partial solutions are solved, and thus the whole

problem is solved. Chang 119811 and Johnson (19821 discuss, in detail, backtrack algorithms

- - i i -l . i 7 ii[ . .. ,. . .



59

tailored to network reliability.

The backtrack procedure can be represented by a binary search structure--binary because

at each factoring step of the algorithm, exactly two subproblems are created. If the complexity

of the reductions and edge-selection strategies employed is polynomially bounded, then the

complexity of the whole algorithm is essentially proportional to the number of leaf nodes in the

backtrack structure since this number tends to be exponential in the size of the problem.

Satyanarayana and Chang 119811 analyzed the complexity of computing R (GK) using a factor-

ing algorithm with series and parallel reductions. They found that the number of leaves in the

associated backtrack structure is at least equal to the "domination" of GK, a combinatorial

invariant denoted D(GK). Using a simple edge-selection strategy, they further showed that it is

possible to create a backtrack structure which has exactly D(GK) leaves. Therefore, a factoring

algorithm using this strategy and series and parallel reductions is optimal.

Chang [19811 goes one step further and analyzes a factoring algorithm for the all-terminal

problem which utilizes parallel and degree-2 reductions. He proves that the optimal algorithm

generates a backtrack structure with the number of leaves equal to another combinatorial

invariant called the "minimum domination" of G. The minimum domination, denoted M(G),

is the minimum of D(GK) over all KQV, with IKI-2. (Johnson [19821 points out that M(G)

is equivalent to a combinatorial invariant on the graphic matroid of G called the "Crapo beta-

invariant.") Chang and Johnson also provide simple edge-selection strategies which insure that

the algorithm is optimal. D(Gv) may be exponentially larger than M(G) so this minimum

domination result is important. Unfortunately, the analysis does not extend to the general K-

terminal case.

One would hope that adding polygon-to-chain reductions to the arsenal of reductions

would significantly reduce the computational complexity of a factoring algorithm. We already

know from the exposition in Chapter 2 that this will be true in some cases. Since the polygon-

to-chain reductions can be bought for little more than the cost of simple reductions alone, only

two facts must be established in order to develop a good factoring algorithm: (i) The edge-
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selection strategy devised can be implemented efficiently; and () this strategy will produce

fewer leaves in the backtrack structure than other possible strategies. We will do this by gen-

eralizing the minimum domination results of Chang [19811 pertaining to the all-terminal prob-

lem. As will be seen, we are only successful for 2< lKl<5 and IVI-2< IKI< Jlv.

4.2 Preliminaries

In this section, we define a few pertinent concepts and detail useful properties of the com-

binatorial invariant, minimum domination. A K-tree of a graph GK is any minimal graph which

connects all the K-vertices of GK. It is a tree which covers all K-vertices and whose degree-I

vertices are all in K. An edge is irrelevant if it does not lie in some K-tree of GK.

A formation of GK is a set of K-trees whose union is GK. Letting N. be the number of

odd cardinality formations of GK and letting N, be the number of even cardinality formations

of GK, then the domination of GK is defined by

D(GK) - [No-Nel

Clearly, D(GK) is a combinatorial invariant of GK.

The minimum domination of a graph G is defined by

M(G) - K ,D(GK)

The following properties of M(G) are established or implicit in Chang [19811.

Property 4.1

(a) M(G) - M(G-e) + M(G'e).

(b) M(G) is invariant under series and parallel replacements.

(c) M(G) >0 if and only if G has no self-loops and is biconnected.

(d) M(G)-1 if and only if G is single edge or a biconnected series-parallel graph.

Property 4.1a is a factoring theorem for minimum domination, and along with the other

properties, it will enable us to analyze the amount of work a network reliability factoring algo-

rithm requires. In the next section we briefly specify a framework for a network reliability
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factoring ilgorithm and show how Property 4.1 may be utilized to find the optimal algorithm for

the all-terminal problem within the given framework. A similar tack is taken in the analysis of

the K-terminal problem in Section 4.4.

4.3 Optimal Factoring Algorithms

The following algorithm which employs the recursive function REL, describes a general

framework for computing network reliability via factoring.

Algorithm 4.1

MAIN

Input: A non-separable graph GK with associated edge probabilities.

Output: K-terminal reliability of GK.
(1) R.- REL(GK)

(2) Print( "R(GK) is" R) and STOP.

End of MAIN.

REL(GK)

Input: Graph GK with associated edge reliabilities.

Output: Returns the value R which is the K-terminal reliability of GK.

(1) M-1.

(2) If GK is disconnected, Return (0).
(3) If IKJ-I, Return (1).
(4) Until no more reliability-preserving reductions can be made

(a) Make any desired reduction on GK to obtain G'K, and fi such that
R(GK)-f)R(G'').

(b) M1-M1O.

() Gz-G'K'
(5) If GK is a K-tree, Return(MIIEPj).

(6) Select an edge e,.
(7) R-M(pREL( GK, 'e)+qREL( GK-e))

(8) Return(R).

End of REL

The exact complexity of the above algorithm will of course depend on what sort of reduc-

tions are used and how much work is required to select an edge for factoring. However, the

L L.. .
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reductions and edge-selection strategies are generally of polynomial complexity, and so we usu-

ally worry only about the number of calls to REL since this number tends to be exponential.

Each call to REL corresponds to a node of the related binary search structure. The total

number of these nodes is proportional to the number of leaf nodes in the structure so we say

that the algorithm's complexity is proportional to the number of leaf nodes in the associated

binary search structure.

Suppose we use Algorithm 4,1 with a particular set of reductions and a particulai edge-

selection strategy and show that the number of leaves in the associated binary search structure

must be equal to some combinatorial invariant of the graph such as domination or minimum

domination. If we can show that any other edge-selection strategy yields a number of leaves

which is greater than the invariant, then the algorithm must be optimal. We show this, subject

to one restriction, when 2(IKIS5 or when JVJ-2<,[K1<,IV[. By then removing the restric-

tion, we find that the number of leaves in the backtrack structure is essentially unchanged for

IVI-2(K41VI, but may actually be less than the value of the invariant for 2<11K[(15I;

thus, we have an algorithm which is demonstrably better than previously available algorithms

and whose complexity is bounded but which is not necessarily optimal in all cases.

We note that there is no known way of computing D(GK) or M(G) other than using a

factoring algorithm or other exponentially complex procedure unless G possesses some special

structure. Consequently, the complexity results do not normally yield any a priori estimate on

the computational requirements of a specific problem. Below, we discuss how domination and

minimum domination have been used to find optimal factoring algorithms.

Satyanarayana and Chang [19811 show how a network reliability factoring algorithm using

series and parallel reductions must create at least D(GK) leaf nodes in its search structure. If

the algorithm never factors so as to create graphs with irrelevant edges or graphs which are

disconnected, then the number of leaves will be exactly equal to D (GK) and the algorithm will

be optimal. An optimal edge-selection strategy for this algorithm is easily implemented. We

will not go into detail about this particular algorithm but rather describe how, for the all-

-4 . . . - .- ¢
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terminal problem, an algorithm can be found which will optimally produce only M(G) leaves.

This discussion, a synthesis of Chang [19811 and Johnson [19821, is the basis for the complex-

ity results of Section 4.4.

Consider using Algorithm 4.1 with parallel and degree-2 reductions in order to compute

R (Gv). Self-loops will never be created because they can only occur if parallel edges are not

reduced. Suppose that we can always find an edge to factor on which never creates cutvertices

in either of the induced graphs. If this is possible, then the minimum domination of all the

induced graphs will always be greater than or equal to I by Properties 4. 1c and 4. 1d. Using this

fact and Properties 4.1a and 4.1b, the domination of all leaf nodes must sum to M(G). Since

the domination of each leaf node graph must be 1, the total number of leaf nodes will be

M(G).

It is not hard to see that M(G) is the minimal number of nodes possible in this algo-

rithmic framework. Let G' be some graph intermediate in the factoring algorithm. G' admits

no parallel or degree-2 reductions and M(G')>1. Suppose we select an edge e for factoring

such that either G'°e or G'-e is separable. Only one of these induced graphs can be separable

since M(G')-M(G"e)+M(G'-e) and if both were separable, we would conclude that

M(G')-O which would be a contradiction. Now assume without loss of generality that G'°e is

separable. Associated with G'Oe is at least one leaf node in the algorithm's search structure and

associated with G'-e are at least M(G') leaf nodes. In this case, the algorithm must create at

least M(G')+1 leaf nodes below G' and therefore at least M(G)+I leaf nodes in total. Thus

an algorithm which creates cutvertices cannot create the minimal number of nodes possible in

its search structure. The algorithm which never creates separable graphs will be optimal if the

edge selection strategy can be carried out efficiently. This is easily done.

Chang's edge-selection strategy amounts to factoring on any edge which is not adjacent to

any vertex of a separating pair. If G is triconnected then any edge will do. Otherwise, an

appropriate edge can be identified by examining the triconnected components and separating

pairs of G and therefore, the edge-selection can be carried out in linear time (See Section 3.2).

. w ..
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Johnson also shows that if G is biconnected, there must exist a split component of G which

has only one virtual edge and at least five real edges and that any edge of such a component

may be selected for factoring.

4.4 New Complexity Results for the K-terminal Problem

Now let's take a look at the complexity of a factoring algorithm utilizing simple reductions

and polygon-to-chain reductions. In order to simplify the initial discussion, one restriction is

first applied: Never factor on an edge e of Gx such that IK'I-1 in GK'e. It will be shown that

for 2<,IKI4151 or IVI-24IKI4IVI, the optimal restricted algorithm will generate M(G)

leaves in its associated binary search structure and that a simple, linear-time edge-selection stra-

tegy will achieve this. These results, while not completely general, are significant from a com-

putational point of view. Consider the graph of Figure 4.1. If we use the factoring algorithm

of Satyanarayana and Chang (19811 which employs series and parallel reductions, the complex-

ity of computing R(GK) is proportional to D( GK)-2 (02)/ 3. With the addition of polygon-to-

chain reductions, the complexity of of the optimal algorithm is proportional to M(G)-I.

Results are basically unchanged for IV1-21 K 14 IVI when the restriction on edge selec-

tion is removed. However, when 24 ,KIK 5 it may be possible to produce fewer than M(G)

leaves in backtrack search structure by factoring so as to give IKI-I in an induced graph.

M(G) then becomes a tight upper bound on computational complexity. Actually, instead of

factoring on such edges, we will define an extended reliability-preserving reduction which

deletes any edge connecting two K-vertices when IKI-2 and show that this reduction cannot

increase complexity.

Preliminary results:

It is not hard to explain why the results of this section are limited to such unusual values

of IKI. The optimal restricted algorithm depends on always being able to find an edge of G to

factor on such that both Ge and G-e are biconnected. Figures 4.2a and 4.2b show minimal

pseudo-triconnected graphs with IK -6 and IKI-1VI-3 respectively. Note that no matter

- . - - - . .. . . .. ..4m r - . .. ".
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G K
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JKj -=6 iKI - lVi -3

(a) (b)

Minimal Pseudo-Triconnected Graphs with IKI
Out of Given Range

FIGURE 4.2
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which edge is selected for factoring, G-e must have a cutvenex. The following lemma is

necessary for proving that it is always possible to find a suitable edge for factoring if IKI is

within the given range.

Lemma 4.1: Suppose G is biconnected and has no series or parallel edges but is not tricon-

nected. Then there exist two split components of G each containing at least five real edges and

only one virtual edge.

Proof: Since G is biconnected but not triconnected, it must contain at least one separating pair.

Let (u, v) be the separating pair which allows us to partition G into two graphs G"1 ) and G(2)

with G-Gu)U G 2 ), E(I)nE(2)-0, Vt1)nV(2)-luv), },IE)l>2, IE)l >2, and such that E(1) is

minimal. Letting e(t )-(u, v) be a virtual edge, G(')+e (1 is a split component of G since it can-

not be split any further. Since G had no series or parallel edges, IVt )1,I4 and IEt )1>I5

(Satyanarayana and Chang [19811).

Next, consider G(2 +e (2 ) where e(2)-(u, v) is a virtual edge. If G(2)+e( 2 ) is triconnected

it is the other split component we were looking for and we are done. Otherwise it must be

biconnected. Partition G(t )+e (2) by a separating pair (x,y) such that G(2)+e(2)-G (3)U G(4) ,

etc., but e(2) E(3 ) and EM) is minimal. Since e(2)g1E( ), G(3) contains no parallel edges and by

construction, it contains no series edges. As argued before, then IV(3 )14 and IEt3 )1>5. Let-

ting e()-(x,y), be a virtual edge, we see that G(3)+e (3) is a split component of G and the

proof is complete. 0

Johnson [19821 proves this next helpful lemma.

Lemma 4.2: If G has no series or parallel edges and is biconnected but not triconnected, then

G'e and G-e will both be biconnected if e is any real edge of one of the split components of

G as specified in Lemma 4. 1.

Our new complexity results for the K-terminal reliability problem will follow directly from

the following tedious theorem.

Theorem 4.1: Let GK be a nontrivial, biconnected graph which admits no simple or polygon-

VU .Kv
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to-chain reductions. If 24< IK< 5 or IVI-2< IK 14 IVI then there exists an edge eEE such that

M(GOe)>O and M(G-e)>0.

Proof: Gy being nontrivial, biconnected and admitting no reductions, implies that M(G)> 1.

Therefore, by Property 4.1c, we need only show that an edge eEE exists such that G'e and

G-e are both biconnected. In the rest of the proof, we let G+ be G with all chains of length

two and three replaced by single edges, and we let K+-{v:vEK,deg(v)>21.

Case la: G+ is triconnected and 2< IKI<5. This implies that IE+1>6, IV+1>4 and there can

be at most five chains containing degree-2 K-vertices. Thus, there exists an edge eEE + which

corresponds directly to an edge eEE as opposed to corresponding to a chain. Since G+ is tri-

connected, G+"e and G+-e must both be (at least) biconnected. These graphs may be

obtained via series and parallel replacements from G"e and C-e, respectively, and thus, by

Properties 4.1b and 4.lc, we have M(G'e)-M(G+'e)>O and M(G-e)-M(G+-e)>0.

Case Ib: G+ is triconnected and IVI-2<KXI<IVI. We need to find an edge egE + which

corresponds directly to an edge eEE. It will suffice to find e+-(u, v) where u, vrK +. Such an

edge cannot correspond to a chain of length two or three in G, since otherwise GK would admit

a degree-2 reduction contrary to assumption.

Now, IV+1>4 since G+ is non-trivial and triconnected. Select any two vertices x,yEK+.

By Menger's well-known theorem, there exist three node disjoint paths from x to y since G is

triconnected. At least one such path must contain only K-vertices since there are at most two

vertices not in Kt Any edge e-(u,v) in that path will have u, vEK. Therefore eEE +

corresponds directly to an edge eEE. The rest of the argument follows as in Case la and we

have M(G'e) >0 and M(G-e) >0.

Case 2a: G+ is biconnected but not triconnected and 2 < IK145. By Lemma 4.1, there are at

least two split components of G+ with a total of at least ten edges. At least five of these edges

must correspond directly to edges in G so select any such edge e eE . By Lemma 4.2, G+ e

and G+'-e are both biconnected and by Properties 4.1b and 4.1c we have

M(G"e)-M(G 'e) >0 and M(G-e)-M(G+-e) >0.

- . i
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Case 2b: G' is biconnected but not triconnected and IV1-2< IK14 IV1. As in Case lb, we

need only show that -here exists an edge e-(u, v) in one of the split components of G' such

that u, vYK+. Suppose there is no such edge. But there must exist an internal vertex wEK + in

one of the components. By "internal vertex" we just mean one of vertices of a component

which is not a separating pair. Now, under the supposition, w can be adjacent to at most two

vertices, neither of which can be K-vertices. This implies that deg( v) 4 2 which is a contradic-

tion. Therefore there must exist an edge e-(u, v)E + such that u, vEK +. This edge is con-

tained in one of the split components of G+ and corresponds directly to an edge eEE. Thus

G+e and G+--e are biconnected and M(G'e)-M(G+ e)>O and M(G-e),,M(G+--e)>O. 0

Theorem 4.1 essentially provides the edge-selection strategy for our restricted factoring

algorithm: Always factor on an edge e such that Gle and G-e are biconnected. A suitably

modified and extended version of Hopcroft and Tarjan's triconnected decomposition algorithm

could always find a proper edge in linear time. Therefore, in proving the optimality of the res-

tricted factoring algorithm, we shall only be concerned with the number of leaves in the

algorithm's backtrack search structure.

It would be handy to be able to say that minimum domination is invariant under simple

reductions and polygon-to-chain reductions. However, minimum domination is defined with

respect to G, not Gy, and consequently, such a statement would be somewhat inconsistent.

Instead, we offer the following property for reference; its validity is a direct result of Property

4.1 (b).

Property 4.2: Let G'K be obtained from GK by any number of simple or polygon-to-chain

reductions. Then M(G)-M(G).

Complexly of the restricted algorithm:

Given the restriction that no induced graph may ever have IKI-I, the next theorem

proves the optimality of the edge-selection strategy described above.

Theorem 4.2: Let GK be a biconnected graph with 241KI45 or IVI-2(IKI41VI. Then we

can compute R(GK) in time proportional to M(G) using a factoring algorithm coupled with

. V - __ ____ __,_
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simple reductions and polygon-to-chain reductions and using an edge-selection strategy which

never creates separable graphs. Furthermore, when restricting edge selection to those edges

which never create induced graphs with IKI-I, this edge-selection strategy is optimal.

Proof: If 2 IK 5 initially , then K I remains within this range in the graphs created as the

algorithm proceeds because neither factoring nor polygon-to-chain reductions ever create addi-

tional K-vertices, and because we do not allow factoring on edges so as to create graphs with

IKI-I. (From Theorem 4.1 we know there are always at least four acceptable edges to factor

on when IKI-2.) Similarly, no reductions or factoring can ever create more non-K-vertices so

if IVI-24 IK I< IVI in the original graph, then this will also hold in any of the graphs encoun-

tered as the algorithm factors and reduces.

Since IKI always remains in the given range, and since after factoring we do all possible

simple and polygon-to-chain reductions, by Theorem 4.1, the algorithm will always be able to

find an edge e such that Gle and G-e are biconnected. Thus M(G'e)>0 and M(G-e)>0 at

each factoring step of the algorithm. Using this fact and Properties 4.1a and 4.2, the sum of

the minimum dominations of all the leaf nodes of the algorithm's backtrack search structure

must be M(G). Since the minimum domination of each leaf node is 1, the total number of

leaves must be M(G). Because the reductions and edge selection at each step can be carried

out in polynomial time, R (GK) can be computed in time proportional to M(G).

The argument for optimality is the same as described for the all-terminal problem in Sec-

tion 4.4. 0

Complexity of the unrestricted algorithm:

We discuss next how the complexity of the factoring algorithm changes when we allow

factoring on an edge such that IKI-I in one of the induced graphs. In an optimization prob-

lem, the value of the objective function can only remain the same or improve if a constraint is

removed. Analogously, the unrestricted algorithm will be no more complex than the restricted

algorithm. This situation deserves a little more attention than a simple statement, however.

We analyze the change in complexity for IV I-24 IKI 4 IV i and 2 IK I 5 separately below.

-- - -~- ----- ---
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Theorem 4.3: The complexity of computing R (GK) is the same using the restricted and unres-

tricted algorithms when IV1-2< IKI< lv1.

Proof: The algorithms can differ only when IK'l-2 in some induced graph G'K. Let G'K, be

such an induced graph. If IKI-IVI or IKI-IVI- in the original graph GK, then IV'I-2 or

IV'--3 in G'c M(G')-I and the unrestricted factoring never comes into play since G'K,

represents a leaf in the backtrack search structure for either algorithm.

If IKI-IVI-2 however, it is possible that IK'l-2, IV'I--4 and M(G')>I. However, this

only occurs if G' is the complete graph on four vertices in which case M(G')-2. No matter

which edge is chosen for factoring, the number of leaves below G' will be two. The restricted

algorithm and unrestricted algorithm might not yield the same leaf graphs in their search struc-

tures but they must yield exactly the same number of leaves, namely M(G). 13

There is an alternative method of looking at the unrestricted algorithm which simplifies

the rest of the discussion. Consider a graph GK such that ei-(u, Y)kE and K-fu, v). Factoring

on e gives

R(GK) - Pi + qR(G-el)

But this is just an extended reliability-preserving reduction of the form

R (G)-il I+f 2R (G'K0). It will be easier to discuss the complexity of the unrestricted factor-

ing algorithm if this reduction is used rather than explicitly factoring on e. This reduction will

be called the trivial reduction and would normally be applied whenever possible. Naturally, it

can be carried out in linear time.

For the case where IKI-IVI-2, the trivial reduction can have the effect of reducing an

induced graph G' with M(G')-2 to G'-e, with M(G'-e)-l. Thus the number of leaves in

the unrestricted algorithm's search structure could be decreased by up to half over the number

created by the restricted algorithm. However, we can say that the restricted algorithm is still

optimal within a constant factor. Such is not the case when 2 IKI45 as will be demonstrated.

Consider the graph GK of Figure 4.1. If we add the edge e- (s,t), then the complexity of

the restricted algorithm becomes proportional to M(G+e)-2(IEI- 3)/2. The complexity of the

-T~
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unrestricted algorithm with the trivial reduction is proportional to M(G)-l. The two values

vary by a decidedly non-constant factor.

It seems intuitively clear that the application of the trivial reduction cannot increase com-

putational complexity. However, the situation is complicated a bit by the fact that deletion of

the edge between the two K-vertices may create a separable graph. The factoring algorithm

should then include biconnected decomposition so that the individual blocks can be identified

and handled separately. The complexity of computing R(GK-e,) will be proportional to the

sum of the complexities of computing the reliability of the non-trivial blocks of GK-e. Trivial

blocks, i.e., bridges, effectively add no complexity since they can be identified and evaluated

within the linear-time, biconnected decomposition. Note that the search structure may no

longer be binary after a trivial reduction; rather, it will have as many branches below GK-e, as

there are non-trivial, biconnected components of GK-e.

The final theorem of this dissertation says that application of the trivial reduction cannot

increase the complexity of the factoring algorithm when 2 < K <5. The notation L(GK) is

used to indicate the number of leaves in the unrestricted algorithm's search structure below a

graph GK.

Theorem 4.4: Let GK be any biconnected graph with 24IKI5. Then L(GK-e)<M(G).

Proof: The argument here is inductive on the number of edges in G. The statement is obvi-

ously true for graphs with six or fewer edges. Assume it is true for graphs with m or fewer

edges and suppose IE-m+l.

If 3 IKI 5, the proof is trivial. Select an edge e for factoring which satisfies the unres-

tricted algorithm's edge-selection strategy. This edge is, of course, the same for both algo-

rithms. Select any edge e such that G'e and G-e are both biconnected. This gives

L(G) - L(G O'e) + L(Gx-e) (4.1)

4 M(G-e) + M(G-e) by the induction hypomnesis

- M(G)

If K I-2 but the two K-vertices are not adjacent, the same argument holds.
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Next suppose KI-2, say K-{u, v), and u and v are adjacent. Let e-(u, ). The next

step in the unrestricted algorithm is to reduce GK by deleting edge e. If G-e is biconnected,

then

L(GK) - L(G'--e) (4.2)

4 M(G-e) by the induction hypothesis

- M(G)-M(G'e)

4 M(G)

The only difficult case arises when G-e is separable.

If G-e is separable, then G must be of the form G(1)U G(2)U e as shown in Figure 4.3a.

We add the zero-reliability edges e(t )-(u, w) and e(2)-(V, w) as shown in Figure 4.3b and first

assume that G(t )+e (l ) and G(2)+e(2 ) are both nontrivial, i.e., their minimum dominations are

both greater than one. Then,

M(G) - M(G+e)+e(2)) (4.3)

- M(G(I)+e(i))M(G(2 )+e(2 )) (4.4)

> M(G()+e(l)) + M(G (2)+e (2)) by assumption of nontriviality

> L( (G( t )+e())l,,,i ) + L( (G(2)+e( 2 )),,, )

- L(G()1 .,w1 ) + L(G (2)(1 I)

- L(GK-e)

- L(GK)

Equation 4.3 may be easily derived by adding edges e (D) and e(2 ) to G, factoring on those edges

and applying Property 4. la to the resulting graphs. Equation 4.4 follows from the facts that (1)

D(GK)-D(K)D(GK) if G-GU d, t')E-o, Vt3V-Ju,4v, E2, t>2 and K-(u, v), and (2)

M(G)-D(G,,.yi) for any adjacent pair of vertices x and y. See Chang 11981].

One of G(' ) or G(2 ) but not both may be a single edge. Without loss of generality,

assume that G(t ) is an edge e. R(GK-e)-,piR(G 2)(v,,I) so L(GK) is just L(G (2) ,,,,).

Therefore

M(G) - M(G (2)+e12))

> L ((G(2)+ e(2 ) I,,) by the induction hypothesis
- VG L((2){,,I

- L(GK)

L '1 - -
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(a) (b)

Illustration for Theorem 4.4

FIGURE 4.3
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